Theory and applications of computational chemistry: the first forty years
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boston, Mass.
Elsevier
2005
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXVII, 1308 S. Ill., graph. Darst. |
ISBN: | 0444517197 0444519041 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV020860798 | ||
003 | DE-604 | ||
005 | 20071011 | ||
007 | t | ||
008 | 051108s2005 xxuad|| |||| 00||| eng d | ||
010 | |a 2005049899 | ||
020 | |a 0444517197 |9 0-444-51719-7 | ||
020 | |a 0444519041 |9 0-444-51904-1 | ||
035 | |a (OCoLC)489009428 | ||
035 | |a (DE-599)BVBBV020860798 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-29T | ||
050 | 0 | |a QD39.3.E46 | |
082 | 0 | |a 542 |2 22 | |
084 | |a VC 6100 |0 (DE-625)147083:253 |2 rvk | ||
245 | 1 | 0 | |a Theory and applications of computational chemistry |b the first forty years |c editors, Clifford Dykstra ... [et al.] |
250 | |a 1. ed. | ||
264 | 1 | |a Boston, Mass. |b Elsevier |c 2005 | |
300 | |a XXVII, 1308 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Chemistry - Data processing | |
650 | 4 | |a Chemie | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Chemistry |x Data processing | |
650 | 0 | 7 | |a Computational chemistry |0 (DE-588)4290091-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computational chemistry |0 (DE-588)4290091-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dykstra, Clifford E. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014182355&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014182355 |
Datensatz im Suchindex
_version_ | 1804134580431618048 |
---|---|
adam_text | Titel: Theory and applications of computational chemistry
Autor: Dykstra, Clifford E.
Jahr: 2005
Vil
Contents
Chapter 1. Computing technologies, theories, and algorithms.
The making of 40 years and more of theoretical and
computational chemistry
Clifford E. Dykstra, Gemot Frenking, Kwang S. Kim and
Gustavo E. Scuseria........................ 1
1.1 Introduction................................. 1
1.2 Technology and methodology........................ 2
1.3 Outlook................................... 6
1.4 Acknowledgements............................. 7
1.5 References.................................. 7
Chapter 2. Dynamical, time-dependent view of molecular theory
Yngve Öhrn and Erik Deumens.................. 9
2.1 Introduction................................. 9
2.2 Molecular Hamiltonian........................... 12
2.3 The time-dependent variational principle in quantum mechanics..... 18
2.4 Coherent states............................... 21
2.4.1 Gaussian wave packet as a coherent state............. 21
2.4.1.1 Gaussian wave packet with evolving width....... 25
2.4.2 The determinantal coherent state for TV electrons......... 29
2.5 Minimal electron nuclear dynamics (END)................ 32
2.6 Rendering of dynamics........................... 37
2.7 Acknowledgements............................. 39
2.8 References.................................. 39
Chapter 3. Computation of non-covalent binding affinities
J. Andrew McCammon....................... 41
3.1 Introduction................................. 41
3.2 Current methods............................... 42
viii Contents
3.3 Future prospects............................... 43
3.4 Concluding perspective: molecular dynamics simulations and
drug discovery................................ 44
3.5 Acknowledgements............................. 45
3.6 References.................................. 45
Chapter 4. Electrodynamics in computational chemistry
Linlin Zhao, Shengli Zou, Encai Hao and
George C. Schatz.......................... 47
4.1 Introduction................................. 47
4.2 Electrodynamics of metal nanoparticles.................. 49
4.2.1 Methods............................... 49
4.2.2 Dielectric constants......................... 50
4.2.3 Spherical particles.......................... 51
4.2.4 Effects of particle shape....................... 51
4.2.5 Effects of solvent and of surrounding layers............ 52
4.2.6 Local electric fields and SERS................... 55
4.3 Electronic structure studies of surface enhanced Raman spectra..... 59
4.3.1 Surface models and electronic structure methods......... 59
4.3.2 Applications............................. 60
4.4 Acknowledgements............................. 63
4.5 References.................................. 64
Chapter 5. Variational transition state theory
Bruce C. Garrett and Donald G. Truhlar............. 67
5.1 Introduction................................. 67
5.2 Gas phase reactions............................. 68
5.2.1 Classical mechanical theory..................... 68
5.2.2 Inclusion of quantum mechanical effects.............. 72
5.2.3 Improved prescriptions for the reaction coordinate
and dividing surface......................... 75
5.2.4 Spectroscopy of the transition state................. 77
5.2.5 Applications............................. 77
5.3 Reactions in condensed phases....................... 77
5.3.1 Reactions in rigid environments and application to reactions
in crystals or at crystal-vapor interfaces.............. 78
5.3.2 Reactions in fluid environments with a single
reaction coordinate......................... 79
5.3.3 Reactions in fluid environments with an ensemble
of reaction coordinates...................... 82
5.4 Summary and conclusions........................ 83
5.5 Acknowledgements............................ 84
5.6 References................................. 84
Contents ix
Chapter 6. Computational chemistry: attempting to simulate large
molecular systems
Enrico Clementi......................... 89
6.1 Introduction............................... 89
6.2 The long preparation and the seeding time: 1930-1960........ 90
6.3 Quantum Chemistry and the Laboratory of Molecular Structure
and Spectra, Chicago, 1960....................... 92
6.4 My Hartree-Fock, MC-SCF and density functional period:
the 1960 decade............................. 95
6.5 From Schrödinger to Newton; my second simulation period...... 103
6.6 Statistical and fluid dynamic simulations, and also computers
hardware development in the Hudson valley.............. 105
6.7 Back to the beginning: a new approach to an old problem....... 108
6.8 Conclusions............................... Ill
6.9 Acknowledgements........................... Ill
6.10 References................................ Ill
Chapter 7. The beginnings of coupled-cluster theory:
an eyewitness account
Josef Paldus........................... 115
7.1 Prehistory ................................ 116
7.2 Gestation.................................. 119
7.3 Birth.................................... 124
7.4 Growing pains............................... 129
7.5 Maturation................................. 132
7.6 Quo vadis?................................. 134
7.7 Acknowledgements............................ 140
7.8 References................................. 140
Chapter 8. Controlling quantum phenomena with photonic reagents
Herschel Rabitz.......................... 149
8.1 How can control of quantum dynamics phenomena be achieved?. . . . 149
8.2 Why does quantum control with photonic reagents appear
to be so easy?............................... 156
8.3 What is occurring during the process of controlling quantum
dynamics phenomena?.......................... 158
8.4 Conclusion................................. 162
8.5 References................................. 162
Chapter 9. First-principles calculations of anharmonic vibrational
spectroscopy of large molecules
R.B. Gerber, G.M. Chaban, B. Brauer and Y. Miller...... 165
9.1 Introduction................................ 165
x Contents
9.2 Anharmonic vibrational spectroscopy methods.............. 167
9.2.1 Perturbation theory........................ 168
9.2.2 The vibrational self-consistent field approach.......... 169
9.2.3 Grid methods........................... 172
9.2.4 Diffusion quantum Monte Carlo................. 172
9.2.5 Semiclassical methods...................... 173
9.3 Ab initio vibrational spectroscopy.................... 173
9.3.1 Fitting ab initio potentials versus direct ab initio
spectroscopy calculations..................... 173
9.3.2 Ab initio VSCF and CC-VSCF.................. 174
9.3.2.1 VSCF equations..................... 174
9.3.2.2 Representations of the potential............. 175
9.3.2.3 CC-VSCF equations................... 177
9.3.2.4 Anharmonic infrared intensities............. 178
9.3.2.5 Electronic structure methods used with VSCF..... 178
9.3.2.6 Improvements and extensions of VSCF
and CC-VSCF...................... 179
9.3.3 Ab initio anharmonic calculations using perturbation
theory............................... 180
9.4 Applications and performance...................... 180
9.4.1 Performance for large molecules................. 180
9.4.2 Spectroscopy calculations as a test of ab initio
and DFT force fields....................... 182
9.4.3 Vibrational spectroscopy of hydrogen-bonded clusters..... 182
9.4.4 Ab initio spectroscopy and the identification of new
molecular species......................... 185
9.4.5 Ab initio spectroscopy and the elucidation of
complex spectra.......................... 186
9.4.6 Overtones and combination mode transitions.......... 186
9.4.7 Open-shell systems........................ 187
9.5 Future directions.............................. 188
9.5.1 Larger systems........................... 188
9.5.2 Quest for increased accuracy................... 189
9.5.3 Time-domain spectroscopy.................... 189
9.6 Acknowledgements............................ 189
9.7 References................................. 190
Chapter 10. Finding minima, transition states, and following
reaction pathways on ab initio potential
energy surfaces
Hrant P. Hratchian and H. Bernhard Schlegel......... 195
10.1 Introduction............................... 195
10.2 Background................................ 196
Contents xi
10.2.1 Potential energy surfaces.................... 196
10.2.2 Analytic PES derivatives.................... 198
10.2.3 Coordinate systems....................... 201
10.3 Minimization............................... 202
10.3.1 Newton methods........................ 203
10.3.2 GDIIS.............................. 207
10.3.3 QM/MM optimizations..................... 209
10.3.4 Finding surface intersections and points of closest
approach............................ 210
10.3.5 Practical considerations..................... 212
10.3.5.1 Starting structure.................. 212
10.3.5.2 Coordinate system.................. 213
10.3.5.3 Minimization algorithm............... 215
10.3.5.4 Hessian quality................... 215
10.3.5.5 Tips for difficult minimizations........... 217
10.4 Transition state optimization....................... 218
10.4.1 Local methods......................... 219
10.4.2 Climbing, bracketing, and interpolation methods....... 220
10.4.3 Path optimization methods................... 224
10.4.4 Practical considerations..................... 227
10.4.4.1 Building an initial structure............. 227
10.4.4.2 Coordinate system.................. 228
10.4.4.3 Algorithm choice.................. 229
10.4.4.4 Hessian quality................... 230
10.4.4.5 Verifying TSs.................... 230
10.5 Reaction path following......................... 230
10.5.1 First-order methods....................... 232
10.5.2 Second-order methods..................... 234
10.5.3 Higher order integrators.................... 236
10.5.4 Dynamic reaction path..................... 237
10.5.5 Practical considerations..................... 238
10.5.5.1 Algorithm choice.................. 238
10.5.5.2 Projected frequencies and coupling matrix
elements....................... 241
10.5.5.3 Bifurcation...................... 242
10.5.5.4 Tips for difficult reaction path calculations..... 242
10.6 Summary and outlook.......................... 243
10.7 References................................ 243
Chapter 11. Progress in the quantum description of vibrational
motion of polyatomic molecules
Joel M. Bowman, Stuart Carter and Nicholas C. Handy. . . . 251
11.1 Introduction............................... 251
11.2 Beyond the harmonic approximation.................. 252
xij Contents
11.3 Vibrational CI theory.......................... 254
11.3.1 The «-mode representation of the potential.......... 255
11.3.2 Results of selected calculations................ 257
11.3.3 The Reaction Path version of MULTIMODE........ 260
11.4 Current bottlenecks and future progress................. 263
11.5 Acknowledgements........................... 265
11.6 References................................ 265
Chapter 12. Toward accurate computations in photobiology
Adalgisa Sinicropi and Massimo Olivucci........... 269
12.1 Introduction............................... 269
12.2 Ab initio quantum chemical methods for excited states........ 272
12.3 Fate of light energy in photobiology.................. 276
12.3.1 GFP spectroscopy........................ 278
12.3.2 Rh spectroscopy........................ 279
12.3.3 The photoisomerization path of Rh.............. 282
12.3.4 Nature of the energy storage.................. 284
12.4 From photobiology to biomimetic molecular switches......... 285
12.5 Conclusions............................... 287
12.6 Acknowledgements........................... 288
12.7 References................................ 288
Chapter 13. The nature of the chemical bond in the light of an energy
decomposition analysis
Matthias Lein and Gernot Frenking.............. 291
13.1 Introduction............................... 291
13.2 Energy decomposition analysis..................... 295
13.3 Bonding in main-group compounds................... 296
13.3.1 Diatomic molecules H2, N2, CO, BF.............. 297
13.3.2 Dipnicogens N2-Bi2...................... 302
13.3.3 Dihalogens F2-I2........................ 303
13.3.4 Nonpolar single bonds of the first octal row H„E-EH„
(E = Li-F; n = 0-3)...................... 305
13.3.5 Nonpolar multiple bonds HB=BH, H2C=CH2, HN=NH
andHC=CH.......................... 308
13.3.6 Nonpolar group-14 bonds H3E-EH3 (E = C-Pb)...... 310
13.3.7 Donor-acceptor bonds Y3B-NX3 and Y3B-PX3
(X, Y = H, Me, Cl)....................... 311
13.3.8 Main group metallocenes ECp2 (E = Be-Ba, Zn, Si-Pb)
and ECp (E = Li-Cs, B-T1).................. 314
13.3.9 Bonding in SF6 and XeF6 and a comparison with WF6 .... 322
13.4 Bonding in transition metal compounds................. 326
13.4.1 Carbonyl complexes TM(CO)g (TW = Hf2 , Ta , W,
Re+, Os2+, Ir3+)........................ 326
Contents xiii
13.4.2 Group-13 heteroleptic diyl complexes (CO)4Fe-ER
(E = B-Tl; R = Cp, Ph, Me) and homolytic diyl complexes
Fe(EMe)5 (E = B-Tl) and TM(EMe)4 (TM = Ni,
Pd, Pt;E = B-Tl)....................... 332
13.4.3 Carbene and carbyne complexes and heavier homologues
(CO)5W-CH2, (CO)5W-E(OH)2, C14W-EH2,
C1(CO)4W-EH and C13W-EH
(E = C, Si, Ge, Sn, Pb)..................... 342
13.4.4 Ethylene and acetylene complexes (CO)5TM-C2HX and
C14TM-C2HX (TM = Cr, Mo, W), (CO)4TM-C2H
(TM = Fe, Ru, Os) and TM+-C2HX (TM = Cu,
Ag, Au)............................. 347
13.4.5 Phosphane complexes (CO)5TM-PX3 (TM = Cr, Mo, W;
X = H, Me, F, Cl)....................... 354
13.4.6 Dihydrogen complexes TM(CO)5(-n2-H2) (TM = Cr, Mo, W)
and W(CO)3X2(T|2-H2) (X = CO, PH3, PC13, PMe3)..... 357
13.4.7 Metallocene complexes Fe(Ti5-E5)2 and Tí(ti5-E5)|~
(E = CH, N, P, As, Sb) and bis(benzene)chromium..... 360
13.5 Conclusion................................ 366
13.6 Acknowledgements........................... 367
13.7 References................................ 367
Chapter 14. Superoperator many-body theory of molecular currents:
non-equilibrium Green functions in real time
Upendra Harbola and Shaul Mukamel............. 373
14.1 Introduction............................... 373
14.2 Dyson equations for superoperator Green functions.......... 375
14.3 The calculation of molecular currents.................. 382
14.4 Discussion................................ 384
14.5 Acknowledgements........................... 384
Appendix 14A: Superoperator expressions for the Keldysh
Green functions..................... 385
Appendix 14B: Superoperator Green function expression
for the current...................... 387
Appendix 14C: Self-energies for superoperator Green functions. . . . 389
Appendix 14D: Dyson equations in the+/— representation...... 393
Appendix 14E: Wick s theorem for superoperators........... 394
14.6 References................................ 395
Chapter 15. Role of computational chemistry in the theory
of unimolecular reaction rates
William L. Hase and Reinhard Schinke............ 397
15.1 Introduction............................... 398
xiv Contents
15.2 Role of computational chemistry.................... 400
15.2.1 The lifetime distribution.................... 400
15.2.2 Intrinsic and apparent non-RRKM behavior.......... 403
15.2.3 Phase space structures..................... 405
15.2.4 Resonance states........................ 409
15.2.5 Steps in unimolecular reaction rates.............. 413
15.2.6 Impact of direct dynamics simulations............. 415
15.3 The future................................ 419
15.4 Acknowledgements........................... 420
15.5 References................................ 420
Chapter 16. Molecular dynamics: an account of its evolution
Raymond Kapral and Giovanni Ciccotti............ 425
16.1 Introduction............................... 425
16.2 Early days................................ 426
16.3 Classical period of classical molecular dynamics............ 428
16.4 Quantum mechanics and molecular dynamics............. 432
16.5 Coarse grained and mesoscopic dynamics............... 435
16.6 Conclusion................................ 437
16.7 Acknowledgements........................... 437
16.8 References................................ 438
Chapter 17. Equations of motion methods for computing electron
affinities and ionization potentials
Jack Simons........................... 443
17.1 Introduction............................... 443
17.2 Basics of EOM theory as applied to EAs and IPs........... 445
17.2.1 The EA equations of motion.................. 445
17.2.2 The analogous equations of motion for
ionization potentials...................... 447
17.2.3 The rank of the operators.................... 448
17.2.4 Equations of lower rank for both EAs and IPs........ 449
17.2.5 Summary............................ 449
17.3 Practical implementations of EOM theories for EAs and IPs..... 450
17.3.1 The M0ller-Plesset based approximations.......... 450
17.3.2 Relationship to Greens functions/propagators......... 453
17.3.3 The natural orbital or extended Koopmans theorem
approach............................ 454
17.3.4 Multiconfiguration-based approximations........... 454
17.3.5 Coupled-cluster based EOM.................. 455
17.4 Some special cases............................ 457
17.4.1 Calculating EAs as IPs..................... 457
17.4.2 Metastable anion states..................... 457
Contents xv
17.5 Summary................................. 461
17.6 Acknowledgements........................... 461
17.7 References................................ 461
Chapter 18. Multireference coupled cluster method based on the
Brillouin-Wigner perturbation theory
Petr Cársky, Jiff Pittner and Ivan Hubac............ 465
18.1 Introduction............................... 465
18.2 Single-reference versus multireference methods............ 466
18.3 Overview of multireference CC methods................ 468
18.4 Multireference Brillouin-Wigner coupled cluster method....... 470
18.5 Intruder states and size extensivity................... 472
18.6 Performance of the multireference Brillouin-Wigner CC
method and applications......................... 476
18.7 Summary................................. 479
18.8 Acknowledgements........................... 479
18.9 References................................ 479
Chapter 19. Electronic structure: the momentum perspective
Ajit J. Thakkar......................... 483
19.1 Introduction............................... 483
19.2 Momentum-space wave functions................... 484
19.3 Densities and density matrices..................... 487
19.4 Properties of the momentum density.................. 490
19.5 Experimental determination of momentum densities......... 491
19.6 Ab initio computations......................... 494
19.7 Illustrative calculations......................... 494
19.8 Concluding remarks.......................... 502
19.9 Acknowledgements........................... 502
19.10 References............................... 502
Chapter 20. Recent advances in ab initio, density functional theory,
and relativistic electronic structure theory
Haruyuki Nakano, Takahito Nakajima, Takao Tsuneda
and Kimihiko Hirao....................... 507
20.1 Introduction............................... 507
20.2 Multireference perturbation theory and valence bond description
of electronic structures of molecules.................. 508
20.2.1 Multireference perturbation theory............... 508
20.2.1.1 Multireference M0ller-Plesset perturbation
method........................ 509
20.2.1.2 Multiconfigurational quasi-degenerate perturbation
theory (MC-QDPT)................. 512
xvi Contents
20.2.1.3 Application of multireference perturbation theory
to singlet-triplet splitting of CH2 and CF2..... 513
20.2.1.4 Extension of reference wavefunctions—
quasi-degenerate perturbation theory with
quasi-complete active space self-consistent field
reference functions (QCAS-QDPT)......... 514
20.2.1.5 Further extension of reference wavefunctions—
quasi-degenerate perturbation theory with
general-multiconfiguration space self-consistent
field reference functions (GMC-QDPT)...... 516
20.2.1.6 Application of QCAS-and GMC-QDPT...... 517
20.2.1.6.1 Transition state barrier height for
the unimolecular dissociation
reaction of formaldehyde
H2CO — H2 + CO........... 517
20.2.1.6.2 Valence excitation energies for
formaldehyde.............. 518
20.2.1.6.3 The most stable structure
of SiC3................. 521
20.2.2 Valence bond description of complete active space
self-consistent field function.................. 523
20.2.2.1 The CASVB method................ 523
20.2.2.2 Description of electronic structure
of benzene...................... 525
20.2.2.3 Description of chemical reaction—hydrogen
exchange reactions H2 + X —? H + HX
(X = F, Cl, Br, and I)................ 526
20.3 Long-range and other corrections for density functionals....... 529
20.3.1 Conventional correction schemes in density
functional theory........................ 529
20.3.2 Long-range correction schemes for exchange
functionals........................... 532
20.3.3 Applicabilities of long-range correction scheme........ 533
20.3.3.1 Van der Waals calculations............. 534
20.3.3.2 Time-dependent density functional
calculations..................... 534
20.3.3.3 Transition metal dimer calculations......... 538
20.3.3.4 Other calculations.................. 540
20.4 Relativistic molecular theory...................... 54O
20.4.1 Introduction........................... 54O
20.4.2 Four-component relativistic molecular theory......... 542
20.4.2.1 Dirac-Hartree-Fock and Dirac-Kohn-Sham
methods....................... 542
20.4.2.2 Generally contracted Gaussian-type spinors
and kinetic balance................. 543
Contents xvii
20.4.2.3 Efficient evaluation of electron repulsion
integrals....................... 544
20.4.2.4 Relativistic pseudospectral approach........ 545
20.4.3 Two-component relativistic molecular theory......... 548
20.4.3.1 Approximate relativistic Hamiltonians....... 548
20.4.3.2 RESC method.................... 548
20.4.3.3 Douglas-Kroll method............... 549
20.4.3.4 Extended Douglas-Kroll transformations applied
to the relativistic many-electron Hamiltonian . . . 550
20.5 Summary................................. 553
20.6 References................................ 554
Chapter 21. Semiempirical quantum-chemical methods in
computational chemistry
Walter Thiel........................... 559
21.1 Introduction............................... 559
21.2 Historical overview........................... 560
21.3 Established methods........................... 563
21.3.1 Basic concepts......................... 563
21.3.2 MNDO and related methods.................. 564
21.4 Selected recent developments...................... 566
21.4.1 Beyond the MNDO model: orthogonalization
corrections........................... 566
21.4.2 Implementation of d orbitals in MNDO-type methods .... 567
21.4.3 Modified general-purpose methods............... 568
21.4.4 Special-purpose parametrizations............... 569
21.4.5 Computational aspects..................... 570
21.4.6 Linear scaling methods..................... 571
21.4.7 Hybrid methods......................... 572
21.5 Selected recent applications....................... 573
21.6 Summary and outlook.......................... 576
21.7 Acknowledgements........................... 577
21.8 References................................ 577
Chapter 22. Size-consistent state-specific multi-reference methods:
a survey of some recent developments
Dola Pahari, Sudip Chattopadhyay, Sanghamitra Das,
Debashis Mukherjee and Uttam Sinha Mahapatra....... 581
22.1 Introduction............................... 582
22.2 The SS-MRCC formalism........................ 589
22.2.1 General developments for the complete model space..... 589
22.2.2 The use of anonymous parentage for inactive excitations
in SS-MRCC method: API-SSMRCC theory......... 593
xviii Contents
22.2.3 Proof of the connectivity of the API-SSMRCC
formalism............................ 598
22.3 Emergence of state-specific multi-reference perturbation theory
SS-MRPT from SS-MRCC theory.................... 599
22.3.1 Choice of the zeroth order Hamiltonians........... 601
22.4 Emergence of the SS-MRCEPA(I) methods from SS-MRCC..... 602
22.5 The size-extensive state-specific MRCC formalism
using an IMS............................... 606
22.6 Results and discussion.......................... 611
22.6.1 H4 model............................ 613
22.6.2 Insertion of Be into H2: BeH2 model............. 615
22.6.3 LiH molecule.......................... 619
22.6.4 BH molecule.......................... 624
22.6.5 First and second order electrical property: LiH molecule . . . 627
22.7 Summary and conclusions........................ 629
22.8 Acknowledgements........................... 630
22.9 References................................ 631
Chapter 23. The valence bond diagram approach: a paradigm for
chemical reactivity
Sason Shaik and Philippe C. Hiberty.............. 635
23.1 Introduction............................... 635
23.2 VB diagrams for chemical reactivity.................. 638
23.3 VBSCD—the origins of barriers in chemical reactions......... 638
23.3.1 Bridges, causes, and causality: a VBSCD perspective .... 640
23.3.2 Comments on quantitative applications of VBSCDs..... 642
23.3.3 Comments on and some qualitative applications
of VBSCDs........................... 643
23.3.3.1 Radical exchange reactions............. 644
23.3.3.2 Electrocyclic and transition metal catalyzed
bond activation reactions.............. 646
23.3.3.3 Reactions between nucleophiles and
electrophiles..................... 647
23.3.4 Making stereochemical predictions with the VBSCD
model.............................. 650
23.4 Valence bond configuration mixing diagrams.............. 652
23.4.1 General features of the VBCMD................ 652
23.4.2 VBCMD with ionic intermediate curves............ 652
23.4.2.1 Proton transfer processes.............. 653
23.4.2.2 Nucleophilic substitution on silicon—stable
hypercoordinated species.............. 654
23.4.3 VBCMD with intermediates nascent from
foreign states ......................... 656
23.4.3.1 The SRN2 and SRN2C mechanisms.......... 656
Contents xix
23.5 Additional applications of VB diagrams................ 658
23.5.1 VBSCD: A general model for electronic delocalization. . . . 658
23.5.2 VBSCD: The twin-state concept and its link to
photochemical reactivity.................... 659
23.6 Prospective................................ 663
23.7 Acknowledgements........................... 664
Appendix 23A: Computing mono-determinant VB wave functions
with standard ab initio programs............ 664
23.8 References................................ 665
Chapter 24. Progress in the development of exchange-correlation
functional
Gustavo E. Scuseria and Viktor N. Staroverov........ 669
24.1 Introduction............................... 669
24.2 Kohn-Sham density functional theory................. 671
24.2.1 Motivation for density functional theory........... 671
24.2.2 Kohn-Sham scheme..................... 673
24.3 Exchange and correlation density functionals............. 675
24.3.1 Exchange-correlation energy................. 675
24.3.2 Ingredients of density functional approximations...... 677
24.3.3 Analytic properties of exchange-correlation functionals . . . 679
24.4 Strategies for designing density functionals.............. 680
24.5 Local density approximations..................... 682
24.5.1 Local density approximation for exchange.......... 682
24.5.2 Local density approximation for correlation......... 684
24.6 Density-gradient expansion....................... 686
24.7 Constraint satisfaction......................... 688
24.7.1 Corrections on the asymptotic behavior........... 688
24.7.2 Normalization of the exchange-correlation hole....... 692
24.7.3 Systematic constraint satisfaction............... 695
24.8 Modeling the exchange-correlation hole................ 699
24.8.1 Exchange functionals based on a model hole........ 699
24.8.2 Functionals based on a correlated wave function...... 701
24.8.3 Functionals based on a model pair correlation function . . . 703
24.8.4 Functionals based on a density matrix expansion...... 704
24.9 Empirical fits.............................. 706
24.10 Mixing exact and approximate exchange............... 708
24.10.1 Global hybrids........................ 708
24.10.2 Local hybrids......................... 711
24.10.3 Screened hybrids....................... 712
24.11 Implementation and performance................... 714
24.12 Conclusion............................... 716
24.13 Acknowledgements........................... 717
24.14 References............................... 717
xx Contents
Chapter 25. Multiconfigurational quantum chemistry
Björn O. Roos.......................... 725
25.1 Introduction............................... 725
25.2 The density matrix and the natural orbitals.............. 727
25.3 The hydrogen molecule......................... 730
25.4 Degeneracy and near degeneracy................... 734
25.4.1 Static and dynamic electron correlation........... 736
25.5 Multiconfigurational wave functions.................. 738
25.5.1 A brief historical expose................... 738
25.5.2 The MCSCF wave function.................. 739
25.5.3 The complete active space SCF method........... 740
25.5.4 Choosing the active space................... 740
25.5.4.1 Atoms and atomic ions............... 741
25.5.4.2 Small molecules.................. 741
25.5.4.3 Electronic spectroscopy for organic
molecules...................... 742
25.5.4.4 Transition metal compounds............ 742
25.5.4.5 Lanthanide and actinide chemistry........ 743
25.6 Dynamic correlation and the CASPT2 method............ 744
25.7 The relativistic regime......................... 747
25.8 Three examples............................. 748
25.8.1 The ozone molecule...................... 749
25.8.2 The allyl radical........................ 751
25.8.2.1 The ground state.................. 752
25.8.2.2 The electronic spectrum.............. 754
25.8.3 The PbF molecule....................... 756
25.9 Conclusions............................... 760
25.10 Acknowledgements........................... 761
25.11 References............................... 761
Chapter 26. Concepts of perturbation, orbital interaction,
orbital mixing and orbital occupation
Myung-Hwan Whangbo..................... 765
26.1 Introduction............................... 765
26.2 Orbital interaction on the basis of effective one-electron
Hamiltonian............................... 766
26.2.1 Exact relationship between two sets of molecular
orbitals............................. 766
26.2.2 Perturbation analysis and orbital interaction.......... 767
26.2.2.1 Non-degenerate perturbation............ 768
26.2.2.2 Degenerate perturbation............... 769
26.2.3 Normal versus counterintuitive orbital interaction....... 770
26.3 Effect of electron-electron repulsion.................. 772
Contents xxi
26.3.1 Configuration interaction.................... 773
26.3.2 States with different orbital occupancy............ 774
26.3.3 Mapping between electronic and spin Hamiltonians..... 775
26.3.4 Spin polarization........................ 777
26.3.5 Non-equivalent orbital interactions in an open-shell
system.............................. 778
26.3.6 Orbital ordering in magnetic solids.............. 780
26.4 Spin-orbit coupling and orbital mixing................. 782
26.5 Concluding remarks........................... 783
26.6 Acknowledgements........................... 783
26.7 References................................ 783
Chapter 27. G2, G3 and associated quantum chemical models
for accurate theoretical thermochemistry
Krishnan Raghavachari and Larry A. Curtiss......... 785
27.1 Introduction............................... 785
27.2 Thermochemical test sets........................ 787
27.3 G2 theory................................ 789
27.3.1 Assessment of G2 theory................... 793
27.4 G3 theory................................ 794
27.4.1 Assessment of G3 theory................... 797
27.5 G3X theory............................... 799
27.5.1 Assessment of G3X theory.................. 801
27.6 G3S theory............................... 803
27.7 G3 theory for third-row elements................... 807
27.8 Applications............................... 808
27.9 Summary and concluding remarks................... 809
27.10 Acknowledgement........................... 810
27.11 References............................... 810
Chapter 28. Factors that affect conductance at the molecular level
Charles W. Bauschlicher Jr. and Alessandra Ricca...... 813
28.1 Introduction............................... 813
28.2 Molecular electronics.......................... 814
28.3 Carbon nanotubes as molecular sensors................. 820
28.4 Conclusions and outlook......................... 827
28.5 Acknowledgements........................... 829
28.6 References................................ 829
Chapter 29. The CH- • -O hydrogen bond: a historical account
Steve Scheiner.......................... 831
29.1 Introduction............................... 831
xxii Contents
29.2 Early thinking.............................. 832
29.2.1 1970s: the beginning of quantum chemical study....... 833
29.2.2 1980s: more accurate calculations............... 834
29.2.3 1990s: proliferation and diversification............ 835
29.3 A surprising observation......................... 837
29.3.1 Status at the end of the 20th century.............. 838
29.4 The 21st century............................. 839
29.4.1 H-bond: to be or not to be?................... 840
29.4.2 Underlying reasons for blue shift............... 843
29.4.3 Other approaches—similar findings.............. 846
29.4.4 Another interpretation..................... 847
29.5 Future perspectives............................ 851
29.6 References................................ 852
Chapter 30. Ab initio and DFT calculations on the Cope
rearrangement, a reaction with a chameleonic
transition state
Weston Thatcher Borden.................... 859
30.1 Introduction............................... 859
30.2 Information from experiments about the Cope TS........... 861
30.3 MINDO/3, AMI, and CASSCF calculations on the Cope TS..... 862
30.4 Inclusion of dynamic electron correlation................ 863
30.5 Substituent effects on the Cope rearrangement............. 865
30.6 Summary................................. 870
30.7 Acknowledgements........................... 872
30.8 References................................ 872
Chapter 31. High-temperature quantum chemical molecular
dynamics simulations of carbon nanostructure
self-assembly processes
Stephan Irle, Guishan Zheng, Marcus Elstner and
Keiji Morokuma......................... 875
31.1 Introduction............................... 876
31.2 Previous theoretical investigations toward fullerene formation
mechanisms............................... 877
31.3 Computational methodology....................... 879
31.4 Self-assembly capping process of open-ended
carbon nanotubes............................. 880
31.5 Self-assembly of fullerene molecules from ensembles of randomly
oriented C2 molecules.......................... 883
31.6 Conclusions............................ 887
31.7 Acknowledgements........................... 887
31.8 References............................... 887
Contents xxiii
Chapter 32. Computational chemistry of isomeric fullerenes and
endofullerenes
Zdenëk Slanina and Shigeru Nagase.............. 891
32.1 Introduction............................... 891
32.2 Relative stabilities of isomers..................... 892
32.3 Energetics and thermodynamics of carbon clusters.......... 893
32.4 Small carbon clusters.......................... 896
32.5 Generation of cages........................... 897
32.6 Smaller fullerenes............................ 897
32.7 Higher fullerenes............................ 898
32.8 Endohedral metallofullerenes..................... 901
32.9 Concluding remarks.......................... 907
32.10 Acknowledgements........................... 907
32.11 References............................... 908
Chapter 33. On the importance of many-body forces in clusters
and condensed phase
Krzysztof Szalewicz, Robert Bukowski and
Bogumil Jeziorski........................ 919
33.1 Introduction............................... 919
33.2 Definitions............................... 921
33.3 Historical perspective.......................... 923
33.4 Perturbation theory of intermolecular interactions........... 927
33.5 Overview of pair contributions..................... 928
33.6 Perturbation theory of nonadditive forces............... 930
33.7 Comparison of nonadditive effects for selected systems....... 933
33.8 Physical interpretation of nonadditive components.......... 937
33.8.1 Third-order induction energy................. 939
33.9 Case studies of nonadditive effects in clusters............. 942
33.9.1 Helium trimer......................... 942
33.9.2 Argon trimer and condensed phase.............. 943
33.9.3 Ar-Ar-HF trimer....................... 946
33.9.4 (H2O)2 HCl trimer....................... 947
33.10 Three-body effects in open-shell clusters............... 948
33.10.1 Ar2NO~(32~) trimer..................... 948
33.10.2 High-spin sodium trimer................... 948
33.10.3 Ar2O~ ionic trimer—the case of orbital degeneracy . . . . 949
33.11 Water clusters and condensed phase.................. 951
33.11.1 Two-body potentials for water................ 951
33.11.2 Three-body potentials for water............... 953
33.11.3 Simulations of liquid water................. 954
13.12 Acknowledgements........................... 958
13.13 References............................... 958
xxiv Contents
Chapter 34. Clusters to functional molecules, nanomaterials,
and molecular devices: theoretical exploration
Kwang S. Kim, P. Tarakeshwar and Han Myoung Lee .... 963
34.1 Introduction............................... 963
34.2 Theoretical background......................... 966
34.3 Clusters.................................. 967
34.3.1 Aqueous clusters........................ 967
34.3.2 Metallic clusters........................ 974
34.3.3 Weakly bound clusters..................... 976
34.4 Ionophores, receptors, and chemical sensors.............. 980
34.5 Nanomaterials.............................. 983
34.6 Molecular devices............................ 987
34.7 Concluding remarks........................... 989
34.8 Acknowledgements........................... 989
34.9 References................................ 989
Chapter 35. Monte Carlo simulations of the finite temperature
properties of (H2O)6
R.A. Christie and K.D. Jordan................. 995
35.1 Introduction............................... 995
35.2 Methodology............................... 998
35.3 Results.................................. 1001
35.3.1 Energetics of (H2O)6; basis set and thermal effects...... 1001
35.3.2 Error analysis of the truncated n-body approximation
for£............................... 1001
35.3.3 Inherent structures....................... 1002
35.3.4 Radial distribution function.................. 1002
35.3.5 Temperature dependence of the energy and heat
capacity of (H2O)6....................... 1003
35.4 Conclusions............................... 1005
35.5 Acknowledgements........................... 1006
35.6 References................................ 1006
Chapter 36. Computational quantum chemistry on polymer chains:
aspects of the last half century
Jean-Marie André........................ 1011
36.1 Introduction............................... 1011
36.2 Electronic structure of polymers: methodology (1965-till date). . . . 1012
36.3 Band structure calculations and photoelectron spectra......... 1016
36.4 Band structure calculations and (semi)conducting properties
(1978-till date)............................. lO2o
36.5 Band structure calculations and non-linear optical properties..... 1025
36.6 Band structure calculations and electron transfer Marcus theory. . . . 1033
Contents xxv
36.7 Conclusions............................... 1041
36.8 Acknowledgements........................... 1042
36.9 References................................ 1042
Chapter 37. Forty years of ab initio calculations on intermolecular
forces
Paul E.S. Wormer and Ad van der Avoird........... 1047
37.1 Introduction............................... 1047
37.2 Prehistory: before computers...................... 1048
37.3 Antiquity: the sixties........................... 1049
37.3.1 Supermolecular methods.................... 1049
37.3.2 Perturbation methods...................... 1051
37.4 The middle ages: era of mainframes.................. 1053
37.4.1 Unexpanded dispersion..................... 1054
37.4.2 Multipole-expanded dispersion................. 1056
37.4.3 Applications........................... 1058
37.5 Modern times: revolution and democracy................ 1059
37.5.1 The SAPT method....................... 1060
37.5.2 The coupled cluster method.................. 1063
37.5.3 Latest developments...................... 1064
Appendix 37A: Relationship between dispersion and E^2...... 1069
37.6 References................................ 1072
Chapter 38. Applied density functional theory and the deMon
codes 1964-2004
D.R. Salahub, A. Goursot, J. Weber, A.M. Köster
and A. Vela........................... 1079
38.1 Introduction. From the 1920s to the 1960s............... 1079
38.2 The 1970s................................ 1081
38.3 The 1980s................................ 1083
38.4 The 1990s................................ 1086
38.5 The 2000s................................ 1089
38.6 Resumé.................................. 1091
38.7 Acknowledgements........................... 1091
38.8 References................................ 1092
Chapter 39. SAC-CI method applied to molecular spectroscopy
M. Ehara, J. Hasegawa and H. Nakatsuji............ 1099
39.1 Introduction............................... 1099
39.2 SAC-CI method............................ 1102
39.3 Excited and ionized states of ir-conjugated organic
compounds............................... 1106
xxvi Contents
39.3.1 Excitation and ionization spectra of furan
and thiophene......................... 1106
39.3.2 p-Benzoquinone and its anión radical............ 1108
39.3.3 Aniline: Effect of the amino-group conformation to the
excitation spectrum...................... 1111
39.4 Collision-induced absorption spectra of CsXe SYSTEM....... 1112
39.5 Transition metal complexes...................... 1115
39.5.1 CrO2Cl2............................ 1115
39.5.2 Tetraoxo complexes: CrO4~, MoO^ , MnOl , TcOl~,
RuOl and OsC 4~...................... 1116
39.5.3 Excited states and 95Mo NMR chemical shift
of MoO4_nS^ (« = 0-4) and MoSel ............ 1118
39.6 Photochemistry of transition metal complex, Ni(CO)4........ 1120
39.7 Porphyrins and related compounds................... 1121
39.7.1 Excited states of free-base phthalocyanine.......... 1122
39.7.2 Bacterial photosynthetic reaction center........... 1124
39.8 Inner-shell ionization spectroscopy.................. 1125
39.8.1 Core-electron binding energy................. 1125
39.8.2 Inner-shell satellite spectrum................. 1126
39.8.3 Vibrational spectrum of inner-shell ionization........ 1127
39.9 Geometries of molecular excited states................ 1128
39.9.1 Malonaldehyde........................ 1128
39.9.2 Multi-electron processes; C2 and CO+............ 1129
39.9.3 Acetylene and CNC...................... 1132
39.10 Hyperfine splitting constants...................... 1133
39.11 Summary................................ 1136
39.12 Acknowledgements........................... 1137
39.13 References............................... 1137
Chapter 40. Forty years of Fenske-Hall molecular orbital theory
Charles Edwin Webster and Michael B. Hall......... 1143
40.1 Introduction............................... 1143
40.2 Illustrative example........................... 1144
40.3 Theory.................................. 1146
40.4 Transition metal clusters......................... 1150
40.5 Conclusions............................... 1163
40.6 Acknowledgements........................... H63
40.7 References................................ H63
Chapter 41. Advances in electronic structure theory:
gamess a decade later
Mark S. Gordon and Michael W. Schmidt........... 1167
41.1 Introduction............................ II57
Contents xxvii
41.2 QM methods............................... 1168
41.2.1 Variational methods...................... 1168
41.2.2 Many-body methods...................... 1172
41.2.3 Excited states, non-adiabatic and relativistic methods..... 1173
41.2.4 Properties related to nuclear energy derivatives........ 1175
41.2.5 Other properties......................... 1176
41.3 Scalable electronic structure theory................... 1177
41.4 QM/MM Methods............................ 1181
41.4.1 Discrete solvent approaches.................. 1181
41.4.2 Surface chemistry........................ 1183
41.4.3 Continuum solvent methods.................. 1184
41.5 Summary and prognosis......................... 1184
41.6 Acknowledgements........................... 1185
41.7 References................................ 1185
Chapter 42. How and why coupled-duster theory became the
pre-eminent method in an ab initia quantum chemistry
Rodney J. Bartlett........................ 1191
42.1 Introduction............................... 1191
42.2 Origins: exp(r2)l0)............................ 1192
42.3 Higher excitations in CC theory: exp(r, +T2 + T3- -----)l0 ..... 1197
42.4 Analytical gradients and the CC functional: E = 0l(l + A)#l0),
Ek = 0l(l + A)fi*l0 .......................... 1202
42.5 Excited states: HRk = Rkok....................... 1207
42.6 Developments for large molecules and polymers............ 1213
42.7 Acknowledgements........................... 1216
42.8 References................................ 1216
Biographical sketches of contributors..................... 1223
Subject Index................................... 1267
|
adam_txt |
Titel: Theory and applications of computational chemistry
Autor: Dykstra, Clifford E.
Jahr: 2005
Vil
Contents
Chapter 1. Computing technologies, theories, and algorithms.
The making of 40 years and more of theoretical and
computational chemistry
Clifford E. Dykstra, Gemot Frenking, Kwang S. Kim and
Gustavo E. Scuseria. 1
1.1 Introduction. 1
1.2 Technology and methodology. 2
1.3 Outlook. 6
1.4 Acknowledgements. 7
1.5 References. 7
Chapter 2. Dynamical, time-dependent view of molecular theory
Yngve Öhrn and Erik Deumens. 9
2.1 Introduction. 9
2.2 Molecular Hamiltonian. 12
2.3 The time-dependent variational principle in quantum mechanics. 18
2.4 Coherent states. 21
2.4.1 Gaussian wave packet as a coherent state. 21
2.4.1.1 Gaussian wave packet with evolving width. 25
2.4.2 The determinantal coherent state for TV electrons. 29
2.5 Minimal electron nuclear dynamics (END). 32
2.6 Rendering of dynamics. 37
2.7 Acknowledgements. 39
2.8 References. 39
Chapter 3. Computation of non-covalent binding affinities
J. Andrew McCammon. 41
3.1 Introduction. 41
3.2 Current methods. 42
viii Contents
3.3 Future prospects. 43
3.4 Concluding perspective: molecular dynamics simulations and
drug discovery. 44
3.5 Acknowledgements. 45
3.6 References. 45
Chapter 4. Electrodynamics in computational chemistry
Linlin Zhao, Shengli Zou, Encai Hao and
George C. Schatz. 47
4.1 Introduction. 47
4.2 Electrodynamics of metal nanoparticles. 49
4.2.1 Methods. 49
4.2.2 Dielectric constants. 50
4.2.3 Spherical particles. 51
4.2.4 Effects of particle shape. 51
4.2.5 Effects of solvent and of surrounding layers. 52
4.2.6 Local electric fields and SERS. 55
4.3 Electronic structure studies of surface enhanced Raman spectra. 59
4.3.1 Surface models and electronic structure methods. 59
4.3.2 Applications. 60
4.4 Acknowledgements. 63
4.5 References. 64
Chapter 5. Variational transition state theory
Bruce C. Garrett and Donald G. Truhlar. 67
5.1 Introduction. 67
5.2 Gas phase reactions. 68
5.2.1 Classical mechanical theory. 68
5.2.2 Inclusion of quantum mechanical effects. 72
5.2.3 Improved prescriptions for the reaction coordinate
and dividing surface. 75
5.2.4 Spectroscopy of the transition state. 77
5.2.5 Applications. 77
5.3 Reactions in condensed phases. 77
5.3.1 Reactions in rigid environments and application to reactions
in crystals or at crystal-vapor interfaces. 78
5.3.2 Reactions in fluid environments with a single
reaction coordinate. 79
5.3.3 Reactions in fluid environments with an ensemble
of reaction coordinates. 82
5.4 Summary and conclusions. 83
5.5 Acknowledgements. 84
5.6 References. 84
Contents ix
Chapter 6. Computational chemistry: attempting to simulate large
molecular systems
Enrico Clementi. 89
6.1 Introduction. 89
6.2 The long preparation and the seeding time: 1930-1960. 90
6.3 Quantum Chemistry and the Laboratory of Molecular Structure
and Spectra, Chicago, 1960. 92
6.4 My Hartree-Fock, MC-SCF and density functional period:
the 1960 decade. 95
6.5 From Schrödinger to Newton; my second simulation period. 103
6.6 Statistical and fluid dynamic simulations, and also computers
hardware development in the Hudson valley. 105
6.7 Back to the beginning: a new approach to an old problem. 108
6.8 Conclusions. Ill
6.9 Acknowledgements. Ill
6.10 References. Ill
Chapter 7. The beginnings of coupled-cluster theory:
an eyewitness account
Josef Paldus. 115
7.1 'Prehistory'. 116
7.2 Gestation. 119
7.3 Birth. 124
7.4 Growing pains. 129
7.5 Maturation. 132
7.6 Quo vadis?. 134
7.7 Acknowledgements. 140
7.8 References. 140
Chapter 8. Controlling quantum phenomena with photonic reagents
Herschel Rabitz. 149
8.1 How can control of quantum dynamics phenomena be achieved?. . . . 149
8.2 Why does quantum control with photonic reagents appear
to be so easy?. 156
8.3 What is occurring during the process of controlling quantum
dynamics phenomena?. 158
8.4 Conclusion. 162
8.5 References. 162
Chapter 9. First-principles calculations of anharmonic vibrational
spectroscopy of large molecules
R.B. Gerber, G.M. Chaban, B. Brauer and Y. Miller. 165
9.1 Introduction. 165
x Contents
9.2 Anharmonic vibrational spectroscopy methods. 167
9.2.1 Perturbation theory. 168
9.2.2 The vibrational self-consistent field approach. 169
9.2.3 Grid methods. 172
9.2.4 Diffusion quantum Monte Carlo. 172
9.2.5 Semiclassical methods. 173
9.3 Ab initio vibrational spectroscopy. 173
9.3.1 Fitting ab initio potentials versus direct ab initio
spectroscopy calculations. 173
9.3.2 Ab initio VSCF and CC-VSCF. 174
9.3.2.1 VSCF equations. 174
9.3.2.2 Representations of the potential. 175
9.3.2.3 CC-VSCF equations. 177
9.3.2.4 Anharmonic infrared intensities. 178
9.3.2.5 Electronic structure methods used with VSCF. 178
9.3.2.6 Improvements and extensions of VSCF
and CC-VSCF. 179
9.3.3 Ab initio anharmonic calculations using perturbation
theory. 180
9.4 Applications and performance. 180
9.4.1 Performance for large molecules. 180
9.4.2 Spectroscopy calculations as a test of ab initio
and DFT force fields. 182
9.4.3 Vibrational spectroscopy of hydrogen-bonded clusters. 182
9.4.4 Ab initio spectroscopy and the identification of new
molecular species. 185
9.4.5 Ab initio spectroscopy and the elucidation of
complex spectra. 186
9.4.6 Overtones and combination mode transitions. 186
9.4.7 Open-shell systems. 187
9.5 Future directions. 188
9.5.1 Larger systems. 188
9.5.2 Quest for increased accuracy. 189
9.5.3 Time-domain spectroscopy. 189
9.6 Acknowledgements. 189
9.7 References. 190
Chapter 10. Finding minima, transition states, and following
reaction pathways on ab initio potential
energy surfaces
Hrant P. Hratchian and H. Bernhard Schlegel. 195
10.1 Introduction. 195
10.2 Background. 196
Contents xi
10.2.1 Potential energy surfaces. 196
10.2.2 Analytic PES derivatives. 198
10.2.3 Coordinate systems. 201
10.3 Minimization. 202
10.3.1 Newton methods. 203
10.3.2 GDIIS. 207
10.3.3 QM/MM optimizations. 209
10.3.4 Finding surface intersections and points of closest
approach. 210
10.3.5 Practical considerations. 212
10.3.5.1 Starting structure. 212
10.3.5.2 Coordinate system. 213
10.3.5.3 Minimization algorithm. 215
10.3.5.4 Hessian quality. 215
10.3.5.5 Tips for difficult minimizations. 217
10.4 Transition state optimization. 218
10.4.1 Local methods. 219
10.4.2 Climbing, bracketing, and interpolation methods. 220
10.4.3 Path optimization methods. 224
10.4.4 Practical considerations. 227
10.4.4.1 Building an initial structure. 227
10.4.4.2 Coordinate system. 228
10.4.4.3 Algorithm choice. 229
10.4.4.4 Hessian quality. 230
10.4.4.5 Verifying TSs. 230
10.5 Reaction path following. 230
10.5.1 First-order methods. 232
10.5.2 Second-order methods. 234
10.5.3 Higher order integrators. 236
10.5.4 Dynamic reaction path. 237
10.5.5 Practical considerations. 238
10.5.5.1 Algorithm choice. 238
10.5.5.2 Projected frequencies and coupling matrix
elements. 241
10.5.5.3 Bifurcation. 242
10.5.5.4 Tips for difficult reaction path calculations. 242
10.6 Summary and outlook. 243
10.7 References. 243
Chapter 11. Progress in the quantum description of vibrational
motion of polyatomic molecules
Joel M. Bowman, Stuart Carter and Nicholas C. Handy. . . . 251
11.1 Introduction. 251
11.2 Beyond the harmonic approximation. 252
xij Contents
11.3 Vibrational CI theory. 254
11.3.1 The «-mode representation of the potential. 255
11.3.2 Results of selected calculations. 257
11.3.3 The 'Reaction Path' version of MULTIMODE. 260
11.4 Current bottlenecks and future progress. 263
11.5 Acknowledgements. 265
11.6 References. 265
Chapter 12. Toward accurate computations in photobiology
Adalgisa Sinicropi and Massimo Olivucci. 269
12.1 Introduction. 269
12.2 Ab initio quantum chemical methods for excited states. 272
12.3 Fate of light energy in photobiology. 276
12.3.1 GFP spectroscopy. 278
12.3.2 Rh spectroscopy. 279
12.3.3 The photoisomerization path of Rh. 282
12.3.4 Nature of the energy storage. 284
12.4 From photobiology to biomimetic molecular switches. 285
12.5 Conclusions. 287
12.6 Acknowledgements. 288
12.7 References. 288
Chapter 13. The nature of the chemical bond in the light of an energy
decomposition analysis
Matthias Lein and Gernot Frenking. 291
13.1 Introduction. 291
13.2 Energy decomposition analysis. 295
13.3 Bonding in main-group compounds. 296
13.3.1 Diatomic molecules H2, N2, CO, BF. 297
13.3.2 Dipnicogens N2-Bi2. 302
13.3.3 Dihalogens F2-I2. 303
13.3.4 Nonpolar single bonds of the first octal row H„E-EH„
(E = Li-F; n = 0-3). 305
13.3.5 Nonpolar multiple bonds HB=BH, H2C=CH2, HN=NH
andHC=CH. 308
13.3.6 Nonpolar group-14 bonds H3E-EH3 (E = C-Pb). 310
13.3.7 Donor-acceptor bonds Y3B-NX3 and Y3B-PX3
(X, Y = H, Me, Cl). 311
13.3.8 Main group metallocenes ECp2 (E = Be-Ba, Zn, Si-Pb)
and ECp (E = Li-Cs, B-T1). 314
13.3.9 Bonding in SF6 and XeF6 and a comparison with WF6 . 322
13.4 Bonding in transition metal compounds. 326
13.4.1 Carbonyl complexes TM(CO)g (TW = Hf2", Ta", W,
Re+, Os2+, Ir3+). 326
Contents xiii
13.4.2 Group-13 heteroleptic diyl complexes (CO)4Fe-ER
(E = B-Tl; R = Cp, Ph, Me) and homolytic diyl complexes
Fe(EMe)5 (E = B-Tl) and TM(EMe)4 (TM = Ni,
Pd, Pt;E = B-Tl). 332
13.4.3 Carbene and carbyne complexes and heavier homologues
(CO)5W-CH2, (CO)5W-E(OH)2, C14W-EH2,
C1(CO)4W-EH and C13W-EH
(E = C, Si, Ge, Sn, Pb). 342
13.4.4 Ethylene and acetylene complexes (CO)5TM-C2HX and
C14TM-C2HX (TM = Cr, Mo, W), (CO)4TM-C2H
(TM = Fe, Ru, Os) and TM+-C2HX (TM = Cu,
Ag, Au). 347
13.4.5 Phosphane complexes (CO)5TM-PX3 (TM = Cr, Mo, W;
X = H, Me, F, Cl). 354
13.4.6 Dihydrogen complexes TM(CO)5(-n2-H2) (TM = Cr, Mo, W)
and W(CO)3X2(T|2-H2) (X = CO, PH3, PC13, PMe3). 357
13.4.7 Metallocene complexes Fe(Ti5-E5)2 and Tí(ti5-E5)|~
(E = CH, N, P, As, Sb) and bis(benzene)chromium. 360
13.5 Conclusion. 366
13.6 Acknowledgements. 367
13.7 References. 367
Chapter 14. Superoperator many-body theory of molecular currents:
non-equilibrium Green functions in real time
Upendra Harbola and Shaul Mukamel. 373
14.1 Introduction. 373
14.2 Dyson equations for superoperator Green functions. 375
14.3 The calculation of molecular currents. 382
14.4 Discussion. 384
14.5 Acknowledgements. 384
Appendix 14A: Superoperator expressions for the Keldysh
Green functions. 385
Appendix 14B: Superoperator Green function expression
for the current. 387
Appendix 14C: Self-energies for superoperator Green functions. . . . 389
Appendix 14D: Dyson equations in the+/— representation. 393
Appendix 14E: Wick's theorem for superoperators. 394
14.6 References. 395
Chapter 15. Role of computational chemistry in the theory
of unimolecular reaction rates
William L. Hase and Reinhard Schinke. 397
15.1 Introduction. 398
xiv Contents
15.2 Role of computational chemistry. 400
15.2.1 The lifetime distribution. 400
15.2.2 Intrinsic and apparent non-RRKM behavior. 403
15.2.3 Phase space structures. 405
15.2.4 Resonance states. 409
15.2.5 Steps in unimolecular reaction rates. 413
15.2.6 Impact of direct dynamics simulations. 415
15.3 The future. 419
15.4 Acknowledgements. 420
15.5 References. 420
Chapter 16. Molecular dynamics: an account of its evolution
Raymond Kapral and Giovanni Ciccotti. 425
16.1 Introduction. 425
16.2 Early days. 426
16.3 Classical period of classical molecular dynamics. 428
16.4 Quantum mechanics and molecular dynamics. 432
16.5 Coarse grained and mesoscopic dynamics. 435
16.6 Conclusion. 437
16.7 Acknowledgements. 437
16.8 References. 438
Chapter 17. Equations of motion methods for computing electron
affinities and ionization potentials
Jack Simons. 443
17.1 Introduction. 443
17.2 Basics of EOM theory as applied to EAs and IPs. 445
17.2.1 The EA equations of motion. 445
17.2.2 The analogous equations of motion for
ionization potentials. 447
17.2.3 The rank of the operators. 448
17.2.4 Equations of lower rank for both EAs and IPs. 449
17.2.5 Summary. 449
17.3 Practical implementations of EOM theories for EAs and IPs. 450
17.3.1 The M0ller-Plesset based approximations. 450
17.3.2 Relationship to Greens functions/propagators. 453
17.3.3 The natural orbital or extended Koopmans' theorem
approach. 454
17.3.4 Multiconfiguration-based approximations. 454
17.3.5 Coupled-cluster based EOM. 455
17.4 Some special cases. 457
17.4.1 Calculating EAs as IPs. 457
17.4.2 Metastable anion states. 457
Contents xv
17.5 Summary. 461
17.6 Acknowledgements. 461
17.7 References. 461
Chapter 18. Multireference coupled cluster method based on the
Brillouin-Wigner perturbation theory
Petr Cársky, Jiff Pittner and Ivan Hubac. 465
18.1 Introduction. 465
18.2 Single-reference versus multireference methods. 466
18.3 Overview of multireference CC methods. 468
18.4 Multireference Brillouin-Wigner coupled cluster method. 470
18.5 Intruder states and size extensivity. 472
18.6 Performance of the multireference Brillouin-Wigner CC
method and applications. 476
18.7 Summary. 479
18.8 Acknowledgements. 479
18.9 References. 479
Chapter 19. Electronic structure: the momentum perspective
Ajit J. Thakkar. 483
19.1 Introduction. 483
19.2 Momentum-space wave functions. 484
19.3 Densities and density matrices. 487
19.4 Properties of the momentum density. 490
19.5 Experimental determination of momentum densities. 491
19.6 Ab initio computations. 494
19.7 Illustrative calculations. 494
19.8 Concluding remarks. 502
19.9 Acknowledgements. 502
19.10 References. 502
Chapter 20. Recent advances in ab initio, density functional theory,
and relativistic electronic structure theory
Haruyuki Nakano, Takahito Nakajima, Takao Tsuneda
and Kimihiko Hirao. 507
20.1 Introduction. 507
20.2 Multireference perturbation theory and valence bond description
of electronic structures of molecules. 508
20.2.1 Multireference perturbation theory. 508
20.2.1.1 Multireference M0ller-Plesset perturbation
method. 509
20.2.1.2 Multiconfigurational quasi-degenerate perturbation
theory (MC-QDPT). 512
xvi Contents
20.2.1.3 Application of multireference perturbation theory
to singlet-triplet splitting of CH2 and CF2. 513
20.2.1.4 Extension of reference wavefunctions—
quasi-degenerate perturbation theory with
quasi-complete active space self-consistent field
reference functions (QCAS-QDPT). 514
20.2.1.5 Further extension of reference wavefunctions—
quasi-degenerate perturbation theory with
general-multiconfiguration space self-consistent
field reference functions (GMC-QDPT). 516
20.2.1.6 Application of QCAS-and GMC-QDPT. 517
20.2.1.6.1 Transition state barrier height for
the unimolecular dissociation
reaction of formaldehyde
H2CO — H2 + CO. 517
20.2.1.6.2 Valence excitation energies for
formaldehyde. 518
20.2.1.6.3 The most stable structure
of SiC3. 521
20.2.2 Valence bond description of complete active space
self-consistent field function. 523
20.2.2.1 The CASVB method. 523
20.2.2.2 Description of electronic structure
of benzene. 525
20.2.2.3 Description of chemical reaction—hydrogen
exchange reactions H2 + X —? H + HX
(X = F, Cl, Br, and I). 526
20.3 Long-range and other corrections for density functionals. 529
20.3.1 Conventional correction schemes in density
functional theory. 529
20.3.2 Long-range correction schemes for exchange
functionals. 532
20.3.3 Applicabilities of long-range correction scheme. 533
20.3.3.1 Van der Waals calculations. 534
20.3.3.2 Time-dependent density functional
calculations. 534
20.3.3.3 Transition metal dimer calculations. 538
20.3.3.4 Other calculations. 540
20.4 Relativistic molecular theory. 54O
20.4.1 Introduction. 54O
20.4.2 Four-component relativistic molecular theory. 542
20.4.2.1 Dirac-Hartree-Fock and Dirac-Kohn-Sham
methods. 542
20.4.2.2 Generally contracted Gaussian-type spinors
and kinetic balance. 543
Contents xvii
20.4.2.3 Efficient evaluation of electron repulsion
integrals. 544
20.4.2.4 Relativistic pseudospectral approach. 545
20.4.3 Two-component relativistic molecular theory. 548
20.4.3.1 Approximate relativistic Hamiltonians. 548
20.4.3.2 RESC method. 548
20.4.3.3 Douglas-Kroll method. 549
20.4.3.4 Extended Douglas-Kroll transformations applied
to the relativistic many-electron Hamiltonian . . . 550
20.5 Summary. 553
20.6 References. 554
Chapter 21. Semiempirical quantum-chemical methods in
computational chemistry
Walter Thiel. 559
21.1 Introduction. 559
21.2 Historical overview. 560
21.3 Established methods. 563
21.3.1 Basic concepts. 563
21.3.2 MNDO and related methods. 564
21.4 Selected recent developments. 566
21.4.1 Beyond the MNDO model: orthogonalization
corrections. 566
21.4.2 Implementation of d orbitals in MNDO-type methods . 567
21.4.3 Modified general-purpose methods. 568
21.4.4 Special-purpose parametrizations. 569
21.4.5 Computational aspects. 570
21.4.6 Linear scaling methods. 571
21.4.7 Hybrid methods. 572
21.5 Selected recent applications. 573
21.6 Summary and outlook. 576
21.7 Acknowledgements. 577
21.8 References. 577
Chapter 22. Size-consistent state-specific multi-reference methods:
a survey of some recent developments
Dola Pahari, Sudip Chattopadhyay, Sanghamitra Das,
Debashis Mukherjee and Uttam Sinha Mahapatra. 581
22.1 Introduction. 582
22.2 The SS-MRCC formalism. 589
22.2.1 General developments for the complete model space. 589
22.2.2 The use of anonymous parentage for inactive excitations
in SS-MRCC method: API-SSMRCC theory. 593
xviii Contents
22.2.3 Proof of the connectivity of the API-SSMRCC
formalism. 598
22.3 Emergence of state-specific multi-reference perturbation theory
SS-MRPT from SS-MRCC theory. 599
22.3.1 Choice of the zeroth order Hamiltonians. 601
22.4 Emergence of the SS-MRCEPA(I) methods from SS-MRCC. 602
22.5 The size-extensive state-specific MRCC formalism
using an IMS. 606
22.6 Results and discussion. 611
22.6.1 H4 model. 613
22.6.2 Insertion of Be into H2: BeH2 model. 615
22.6.3 LiH molecule. 619
22.6.4 BH molecule. 624
22.6.5 First and second order electrical property: LiH molecule . . . 627
22.7 Summary and conclusions. 629
22.8 Acknowledgements. 630
22.9 References. 631
Chapter 23. The valence bond diagram approach: a paradigm for
chemical reactivity
Sason Shaik and Philippe C. Hiberty. 635
23.1 Introduction. 635
23.2 VB diagrams for chemical reactivity. 638
23.3 VBSCD—the origins of barriers in chemical reactions. 638
23.3.1 Bridges, causes, and causality: a VBSCD perspective . 640
23.3.2 Comments on quantitative applications of VBSCDs. 642
23.3.3 Comments on and some qualitative applications
of VBSCDs. 643
23.3.3.1 Radical exchange reactions. 644
23.3.3.2 Electrocyclic and transition metal catalyzed
bond activation reactions. 646
23.3.3.3 Reactions between nucleophiles and
electrophiles. 647
23.3.4 Making stereochemical predictions with the VBSCD
model. 650
23.4 Valence bond configuration mixing diagrams. 652
23.4.1 General features of the VBCMD. 652
23.4.2 VBCMD with ionic intermediate curves. 652
23.4.2.1 Proton transfer processes. 653
23.4.2.2 Nucleophilic substitution on silicon—stable
hypercoordinated species. 654
23.4.3 VBCMD with intermediates nascent from
'foreign states'. 656
23.4.3.1 The SRN2 and SRN2C mechanisms. 656
Contents xix
23.5 Additional applications of VB diagrams. 658
23.5.1 VBSCD: A general model for electronic delocalization. . . . 658
23.5.2 VBSCD: The twin-state concept and its link to
photochemical reactivity. 659
23.6 Prospective. 663
23.7 Acknowledgements. 664
Appendix 23A: Computing mono-determinant VB wave functions
with standard ab initio programs. 664
23.8 References. 665
Chapter 24. Progress in the development of exchange-correlation
functional
Gustavo E. Scuseria and Viktor N. Staroverov. 669
24.1 Introduction. 669
24.2 Kohn-Sham density functional theory. 671
24.2.1 Motivation for density functional theory. 671
24.2.2 Kohn-Sham scheme. 673
24.3 Exchange and correlation density functionals. 675
24.3.1 Exchange-correlation energy. 675
24.3.2 Ingredients of density functional approximations. 677
24.3.3 Analytic properties of exchange-correlation functionals . . . 679
24.4 Strategies for designing density functionals. 680
24.5 Local density approximations. 682
24.5.1 Local density approximation for exchange. 682
24.5.2 Local density approximation for correlation. 684
24.6 Density-gradient expansion. 686
24.7 Constraint satisfaction. 688
24.7.1 Corrections on the asymptotic behavior. 688
24.7.2 Normalization of the exchange-correlation hole. 692
24.7.3 Systematic constraint satisfaction. 695
24.8 Modeling the exchange-correlation hole. 699
24.8.1 Exchange functionals based on a model hole. 699
24.8.2 Functionals based on a correlated wave function. 701
24.8.3 Functionals based on a model pair correlation function . . . 703
24.8.4 Functionals based on a density matrix expansion. 704
24.9 Empirical fits. 706
24.10 Mixing exact and approximate exchange. 708
24.10.1 Global hybrids. 708
24.10.2 Local hybrids. 711
24.10.3 Screened hybrids. 712
24.11 Implementation and performance. 714
24.12 Conclusion. 716
24.13 Acknowledgements. 717
24.14 References. 717
xx Contents
Chapter 25. Multiconfigurational quantum chemistry
Björn O. Roos. 725
25.1 Introduction. 725
25.2 The density matrix and the natural orbitals. 727
25.3 The hydrogen molecule. 730
25.4 Degeneracy and near degeneracy. 734
25.4.1 Static and dynamic electron correlation. 736
25.5 Multiconfigurational wave functions. 738
25.5.1 A brief historical expose. 738
25.5.2 The MCSCF wave function. 739
25.5.3 The complete active space SCF method. 740
25.5.4 Choosing the active space. 740
25.5.4.1 Atoms and atomic ions. 741
25.5.4.2 Small molecules. 741
25.5.4.3 Electronic spectroscopy for organic
molecules. 742
25.5.4.4 Transition metal compounds. 742
25.5.4.5 Lanthanide and actinide chemistry. 743
25.6 Dynamic correlation and the CASPT2 method. 744
25.7 The relativistic regime. 747
25.8 Three examples. 748
25.8.1 The ozone molecule. 749
25.8.2 The allyl radical. 751
25.8.2.1 The ground state. 752
25.8.2.2 The electronic spectrum. 754
25.8.3 The PbF molecule. 756
25.9 Conclusions. 760
25.10 Acknowledgements. 761
25.11 References. 761
Chapter 26. Concepts of perturbation, orbital interaction,
orbital mixing and orbital occupation
Myung-Hwan Whangbo. 765
26.1 Introduction. 765
26.2 Orbital interaction on the basis of effective one-electron
Hamiltonian. 766
26.2.1 Exact relationship between two sets of molecular
orbitals. 766
26.2.2 Perturbation analysis and orbital interaction. 767
26.2.2.1 Non-degenerate perturbation. 768
26.2.2.2 Degenerate perturbation. 769
26.2.3 Normal versus counterintuitive orbital interaction. 770
26.3 Effect of electron-electron repulsion. 772
Contents xxi
26.3.1 Configuration interaction. 773
26.3.2 States with different orbital occupancy. 774
26.3.3 Mapping between electronic and spin Hamiltonians. 775
26.3.4 Spin polarization. 777
26.3.5 Non-equivalent orbital interactions in an open-shell
system. 778
26.3.6 Orbital ordering in magnetic solids. 780
26.4 Spin-orbit coupling and orbital mixing. 782
26.5 Concluding remarks. 783
26.6 Acknowledgements. 783
26.7 References. 783
Chapter 27. G2, G3 and associated quantum chemical models
for accurate theoretical thermochemistry
Krishnan Raghavachari and Larry A. Curtiss. 785
27.1 Introduction. 785
27.2 Thermochemical test sets. 787
27.3 G2 theory. 789
27.3.1 Assessment of G2 theory. 793
27.4 G3 theory. 794
27.4.1 Assessment of G3 theory. 797
27.5 G3X theory. 799
27.5.1 Assessment of G3X theory. 801
27.6 G3S theory. 803
27.7 G3 theory for third-row elements. 807
27.8 Applications. 808
27.9 Summary and concluding remarks. 809
27.10 Acknowledgement. 810
27.11 References. 810
Chapter 28. Factors that affect conductance at the molecular level
Charles W. Bauschlicher Jr. and Alessandra Ricca. 813
28.1 Introduction. 813
28.2 Molecular electronics. 814
28.3 Carbon nanotubes as molecular sensors. 820
28.4 Conclusions and outlook. 827
28.5 Acknowledgements. 829
28.6 References. 829
Chapter 29. The CH- • -O hydrogen bond: a historical account
Steve Scheiner. 831
29.1 Introduction. 831
xxii Contents
29.2 Early thinking. 832
29.2.1 1970s: the beginning of quantum chemical study. 833
29.2.2 1980s: more accurate calculations. 834
29.2.3 1990s: proliferation and diversification. 835
29.3 A surprising observation. 837
29.3.1 Status at the end of the 20th century. 838
29.4 The 21st century. 839
29.4.1 H-bond: to be or not to be?. 840
29.4.2 Underlying reasons for blue shift. 843
29.4.3 Other approaches—similar findings. 846
29.4.4 Another interpretation. 847
29.5 Future perspectives. 851
29.6 References. 852
Chapter 30. Ab initio and DFT calculations on the Cope
rearrangement, a reaction with a chameleonic
transition state
Weston Thatcher Borden. 859
30.1 Introduction. 859
30.2 Information from experiments about the Cope TS. 861
30.3 MINDO/3, AMI, and CASSCF calculations on the Cope TS. 862
30.4 Inclusion of dynamic electron correlation. 863
30.5 Substituent effects on the Cope rearrangement. 865
30.6 Summary. 870
30.7 Acknowledgements. 872
30.8 References. 872
Chapter 31. High-temperature quantum chemical molecular
dynamics simulations of carbon nanostructure
self-assembly processes
Stephan Irle, Guishan Zheng, Marcus Elstner and
Keiji Morokuma. 875
31.1 Introduction. 876
31.2 Previous theoretical investigations toward fullerene formation
mechanisms. 877
31.3 Computational methodology. 879
31.4 Self-assembly capping process of open-ended
carbon nanotubes. 880
31.5 Self-assembly of fullerene molecules from ensembles of randomly
oriented C2 molecules. 883
31.6 Conclusions. 887
31.7 Acknowledgements. 887
31.8 References. 887
Contents xxiii
Chapter 32. Computational chemistry of isomeric fullerenes and
endofullerenes
Zdenëk Slanina and Shigeru Nagase. 891
32.1 Introduction. 891
32.2 Relative stabilities of isomers. 892
32.3 Energetics and thermodynamics of carbon clusters. 893
32.4 Small carbon clusters. 896
32.5 Generation of cages. 897
32.6 Smaller fullerenes. 897
32.7 Higher fullerenes. 898
32.8 Endohedral metallofullerenes. 901
32.9 Concluding remarks. 907
32.10 Acknowledgements. 907
32.11 References. 908
Chapter 33. On the importance of many-body forces in clusters
and condensed phase
Krzysztof Szalewicz, Robert Bukowski and
Bogumil Jeziorski. 919
33.1 Introduction. 919
33.2 Definitions. 921
33.3 Historical perspective. 923
33.4 Perturbation theory of intermolecular interactions. 927
33.5 Overview of pair contributions. 928
33.6 Perturbation theory of nonadditive forces. 930
33.7 Comparison of nonadditive effects for selected systems. 933
33.8 Physical interpretation of nonadditive components. 937
33.8.1 Third-order induction energy. 939
33.9 Case studies of nonadditive effects in clusters. 942
33.9.1 Helium trimer. 942
33.9.2 Argon trimer and condensed phase. 943
33.9.3 Ar-Ar-HF trimer. 946
33.9.4 (H2O)2 HCl trimer. 947
33.10 Three-body effects in open-shell clusters. 948
33.10.1 Ar2NO~(32~) trimer. 948
33.10.2 High-spin sodium trimer. 948
33.10.3 Ar2O~ ionic trimer—the case of orbital degeneracy . . . . 949
33.11 Water clusters and condensed phase. 951
33.11.1 Two-body potentials for water. 951
33.11.2 Three-body potentials for water. 953
33.11.3 Simulations of liquid water. 954
13.12 Acknowledgements. 958
13.13 References. 958
xxiv Contents
Chapter 34. Clusters to functional molecules, nanomaterials,
and molecular devices: theoretical exploration
Kwang S. Kim, P. Tarakeshwar and Han Myoung Lee . 963
34.1 Introduction. 963
34.2 Theoretical background. 966
34.3 Clusters. 967
34.3.1 Aqueous clusters. 967
34.3.2 Metallic clusters. 974
34.3.3 Weakly bound clusters. 976
34.4 Ionophores, receptors, and chemical sensors. 980
34.5 Nanomaterials. 983
34.6 Molecular devices. 987
34.7 Concluding remarks. 989
34.8 Acknowledgements. 989
34.9 References. 989
Chapter 35. Monte Carlo simulations of the finite temperature
properties of (H2O)6
R.A. Christie and K.D. Jordan. 995
35.1 Introduction. 995
35.2 Methodology. 998
35.3 Results. 1001
35.3.1 Energetics of (H2O)6; basis set and thermal effects. 1001
35.3.2 Error analysis of the truncated n-body approximation
for£. 1001
35.3.3 Inherent structures. 1002
35.3.4 Radial distribution function. 1002
35.3.5 Temperature dependence of the energy and heat
capacity of (H2O)6. 1003
35.4 Conclusions. 1005
35.5 Acknowledgements. 1006
35.6 References. 1006
Chapter 36. Computational quantum chemistry on polymer chains:
aspects of the last half century
Jean-Marie André. 1011
36.1 Introduction. 1011
36.2 Electronic structure of polymers: methodology (1965-till date). . . . 1012
36.3 Band structure calculations and photoelectron spectra. 1016
36.4 Band structure calculations and (semi)conducting properties
(1978-till date). lO2o
36.5 Band structure calculations and non-linear optical properties. 1025
36.6 Band structure calculations and electron transfer Marcus theory. . . . 1033
Contents xxv
36.7 Conclusions. 1041
36.8 Acknowledgements. 1042
36.9 References. 1042
Chapter 37. Forty years of ab initio calculations on intermolecular
forces
Paul E.S. Wormer and Ad van der Avoird. 1047
37.1 Introduction. 1047
37.2 Prehistory: before computers. 1048
37.3 Antiquity: the sixties. 1049
37.3.1 Supermolecular methods. 1049
37.3.2 Perturbation methods. 1051
37.4 The middle ages: era of mainframes. 1053
37.4.1 Unexpanded dispersion. 1054
37.4.2 Multipole-expanded dispersion. 1056
37.4.3 Applications. 1058
37.5 Modern times: revolution and democracy. 1059
37.5.1 The SAPT method. 1060
37.5.2 The coupled cluster method. 1063
37.5.3 Latest developments. 1064
Appendix 37A: Relationship between dispersion and E^2. 1069
37.6 References. 1072
Chapter 38. Applied density functional theory and the deMon
codes 1964-2004
D.R. Salahub, A. Goursot, J. Weber, A.M. Köster
and A. Vela. 1079
38.1 Introduction. From the 1920s to the 1960s. 1079
38.2 The 1970s. 1081
38.3 The 1980s. 1083
38.4 The 1990s. 1086
38.5 The 2000s. 1089
38.6 Resumé. 1091
38.7 Acknowledgements. 1091
38.8 References. 1092
Chapter 39. SAC-CI method applied to molecular spectroscopy
M. Ehara, J. Hasegawa and H. Nakatsuji. 1099
39.1 Introduction. 1099
39.2 SAC-CI method. 1102
39.3 Excited and ionized states of ir-conjugated organic
compounds. 1106
xxvi Contents
39.3.1 Excitation and ionization spectra of furan
and thiophene. 1106
39.3.2 p-Benzoquinone and its anión radical. 1108
39.3.3 Aniline: Effect of the amino-group conformation to the
excitation spectrum. 1111
39.4 Collision-induced absorption spectra of CsXe SYSTEM. 1112
39.5 Transition metal complexes. 1115
39.5.1 CrO2Cl2. 1115
39.5.2 Tetraoxo complexes: CrO4~, MoO^", MnOl", TcOl~,
RuOl" and OsC 4~. 1116
39.5.3 Excited states and 95Mo NMR chemical shift
of MoO4_nS^"(« = 0-4) and MoSel". 1118
39.6 Photochemistry of transition metal complex, Ni(CO)4. 1120
39.7 Porphyrins and related compounds. 1121
39.7.1 Excited states of free-base phthalocyanine. 1122
39.7.2 Bacterial photosynthetic reaction center. 1124
39.8 Inner-shell ionization spectroscopy. 1125
39.8.1 Core-electron binding energy. 1125
39.8.2 Inner-shell satellite spectrum. 1126
39.8.3 Vibrational spectrum of inner-shell ionization. 1127
39.9 Geometries of molecular excited states. 1128
39.9.1 Malonaldehyde. 1128
39.9.2 Multi-electron processes; C2 and CO+. 1129
39.9.3 Acetylene and CNC. 1132
39.10 Hyperfine splitting constants. 1133
39.11 Summary. 1136
39.12 Acknowledgements. 1137
39.13 References. 1137
Chapter 40. Forty years of Fenske-Hall molecular orbital theory
Charles Edwin Webster and Michael B. Hall. 1143
40.1 Introduction. 1143
40.2 Illustrative example. 1144
40.3 Theory. 1146
40.4 Transition metal clusters. 1150
40.5 Conclusions. 1163
40.6 Acknowledgements. H63
40.7 References. H63
Chapter 41. Advances in electronic structure theory:
gamess a decade later
Mark S. Gordon and Michael W. Schmidt. 1167
41.1 Introduction. II57
Contents xxvii
41.2 QM methods. 1168
41.2.1 Variational methods. 1168
41.2.2 Many-body methods. 1172
41.2.3 Excited states, non-adiabatic and relativistic methods. 1173
41.2.4 Properties related to nuclear energy derivatives. 1175
41.2.5 Other properties. 1176
41.3 Scalable electronic structure theory. 1177
41.4 QM/MM Methods. 1181
41.4.1 Discrete solvent approaches. 1181
41.4.2 Surface chemistry. 1183
41.4.3 Continuum solvent methods. 1184
41.5 Summary and prognosis. 1184
41.6 Acknowledgements. 1185
41.7 References. 1185
Chapter 42. How and why coupled-duster theory became the
pre-eminent method in an ab initia quantum chemistry
Rodney J. Bartlett. 1191
42.1 Introduction. 1191
42.2 Origins: exp(r2)l0). 1192
42.3 Higher excitations in CC theory: exp(r, +T2 + T3-\-----)l0 . 1197
42.4 Analytical gradients and the CC functional: E = 0l(l + A)#l0),
Ek = 0l(l + A)fi*l0 . 1202
42.5 Excited states: HRk = Rkok. 1207
42.6 Developments for large molecules and polymers. 1213
42.7 Acknowledgements. 1216
42.8 References. 1216
Biographical sketches of contributors. 1223
Subject Index. 1267 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV020860798 |
callnumber-first | Q - Science |
callnumber-label | QD39 |
callnumber-raw | QD39.3.E46 |
callnumber-search | QD39.3.E46 |
callnumber-sort | QD 239.3 E46 |
callnumber-subject | QD - Chemistry |
classification_rvk | VC 6100 |
ctrlnum | (OCoLC)489009428 (DE-599)BVBBV020860798 |
dewey-full | 542 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 542 - Techniques, equipment & materials |
dewey-raw | 542 |
dewey-search | 542 |
dewey-sort | 3542 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01613nam a2200445zc 4500</leader><controlfield tag="001">BV020860798</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071011 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051108s2005 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005049899</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444517197</subfield><subfield code="9">0-444-51719-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444519041</subfield><subfield code="9">0-444-51904-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)489009428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020860798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD39.3.E46</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">542</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VC 6100</subfield><subfield code="0">(DE-625)147083:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and applications of computational chemistry</subfield><subfield code="b">the first forty years</subfield><subfield code="c">editors, Clifford Dykstra ... [et al.]</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass.</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 1308 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry - Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computational chemistry</subfield><subfield code="0">(DE-588)4290091-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computational chemistry</subfield><subfield code="0">(DE-588)4290091-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dykstra, Clifford E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014182355&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014182355</subfield></datafield></record></collection> |
id | DE-604.BV020860798 |
illustrated | Illustrated |
index_date | 2024-07-02T13:22:56Z |
indexdate | 2024-07-09T20:26:52Z |
institution | BVB |
isbn | 0444517197 0444519041 |
language | English |
lccn | 2005049899 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014182355 |
oclc_num | 489009428 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-29T |
owner_facet | DE-19 DE-BY-UBM DE-29T |
physical | XXVII, 1308 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Elsevier |
record_format | marc |
spelling | Theory and applications of computational chemistry the first forty years editors, Clifford Dykstra ... [et al.] 1. ed. Boston, Mass. Elsevier 2005 XXVII, 1308 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Chemistry - Data processing Chemie Datenverarbeitung Chemistry Data processing Computational chemistry (DE-588)4290091-8 gnd rswk-swf Computational chemistry (DE-588)4290091-8 s DE-604 Dykstra, Clifford E. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014182355&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Theory and applications of computational chemistry the first forty years Chemistry - Data processing Chemie Datenverarbeitung Chemistry Data processing Computational chemistry (DE-588)4290091-8 gnd |
subject_GND | (DE-588)4290091-8 |
title | Theory and applications of computational chemistry the first forty years |
title_auth | Theory and applications of computational chemistry the first forty years |
title_exact_search | Theory and applications of computational chemistry the first forty years |
title_exact_search_txtP | Theory and applications of computational chemistry the first forty years |
title_full | Theory and applications of computational chemistry the first forty years editors, Clifford Dykstra ... [et al.] |
title_fullStr | Theory and applications of computational chemistry the first forty years editors, Clifford Dykstra ... [et al.] |
title_full_unstemmed | Theory and applications of computational chemistry the first forty years editors, Clifford Dykstra ... [et al.] |
title_short | Theory and applications of computational chemistry |
title_sort | theory and applications of computational chemistry the first forty years |
title_sub | the first forty years |
topic | Chemistry - Data processing Chemie Datenverarbeitung Chemistry Data processing Computational chemistry (DE-588)4290091-8 gnd |
topic_facet | Chemistry - Data processing Chemie Datenverarbeitung Chemistry Data processing Computational chemistry |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014182355&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dykstraclifforde theoryandapplicationsofcomputationalchemistrythefirstfortyyears |