Matrix groups: an introduction to Lie group theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2006
|
Ausgabe: | 3. print. |
Schriftenreihe: | Springer undergraduate mathematics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XI, 330 S. graph. Darst. |
ISBN: | 1852334703 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV020850110 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 051028s2006 gw d||| |||| 00||| eng d | ||
020 | |a 1852334703 |9 1-85233-470-3 | ||
035 | |a (OCoLC)608884959 | ||
035 | |a (DE-599)BVBBV020850110 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-20 |a DE-703 |a DE-11 |a DE-29T | ||
050 | 0 | |a QA174.2 | |
082 | 0 | |a 512.2 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 225f |2 stub | ||
084 | |a MAT 204f |2 stub | ||
100 | 1 | |a Baker, Andrew |d 1953- |e Verfasser |0 (DE-588)123051479 |4 aut | |
245 | 1 | 0 | |a Matrix groups |b an introduction to Lie group theory |c Andrew Baker |
250 | |a 3. print. | ||
264 | 1 | |a London [u.a.] |b Springer |c 2006 | |
300 | |a XI, 330 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer undergraduate mathematics series | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizengruppe |0 (DE-588)4169127-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizengruppe |0 (DE-588)4169127-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UBRegensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-014171832 |
Datensatz im Suchindex
_version_ | 1804134563190931456 |
---|---|
adam_text | Contents
Part I. Basic Ideas and Examples
1.
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.
groups
2.1
2.2
2.3
2.4
2.5
3.
3.1
3.2
3.3
x
3.4
Group
3.5
3.6
4.
4.1
4.2
4.3
4.4
4.5
4.6
5.
5.1
5.2
5.3
5.4
5.5
6.
6.1
6.2
6.3
Part II. Matrix Groups as Lie Groups
7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.
8.1
8.2
8.3
8.4
Contents
8.5
8.6
8.7
8.8
9.
9.1
9.2
9.3
9.4
Part III. Compact Connected Lie Groups and their Classification
10.
10.1
10.2
10.3
10.4
11.
11.1
11.2
11.3
11.4
11.5
12.
12.1
12.2
12.3
12.4
12.5
12.6
Hints and Solutions to Selected Exercises
Bibliography
Index
Aimed at advanced undergraduate and beginning graduate
students, this book provides a first taste of the theory of Lie
groups as an appetiser for a more substantial further course.
Lie theoretic ideas lie at the heart of much of standard
undergraduate linear algebra and exposure to them can inform
or ¡motivate the study of the latter.
The main focus is on matrix groups, i.e., closed subgroups of
real and complex general linear groups. The first part studies
examples and describes the classical families of simply
connected compact groups. The second part introduces the
idea of a Lie group and studies the associated notion of a
homogeneous space using orbits of smooth actions.
Throughout, the emphasis is oh providing an approach that is
accessible to readers equipped with a standard undergraduate
toolkit of algebra and analysis. Although the formal prerequisites
are kept as low level as possible, the subject matter is
sophisticated and contains many of the key themes of the fully
developed theory, preparing students for a more standard and
abstract course in Lie theory and differential geometry.
The Springer Undergraduate Mathematics Series (SUMS) is
designed for undergraduates in the mathematical sciences.
From core foundational material to final year topics, SUMS
books take a fresh and modern approach and are ideal for self-
study or for a one- or two-semester course. Each book includes
numerous examples, problems and fully-worked solutions.
|
adam_txt |
Contents
Part I. Basic Ideas and Examples
1.
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.
groups
2.1
2.2
2.3
2.4
2.5
3.
3.1
3.2
3.3
x
3.4
Group
3.5
3.6
4.
4.1
4.2
4.3
4.4
4.5
4.6
5.
5.1
5.2
5.3
5.4
5.5
6.
6.1
6.2
6.3
Part II. Matrix Groups as Lie Groups
7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.
8.1
8.2
8.3
8.4
Contents
8.5
8.6
8.7
8.8
9.
9.1
9.2
9.3
9.4
Part III. Compact Connected Lie Groups and their Classification
10.
10.1
10.2
10.3
10.4
11.
11.1
11.2
11.3
11.4
11.5
12.
12.1
12.2
12.3
12.4
12.5
12.6
Hints and Solutions to Selected Exercises
Bibliography
Index
Aimed at advanced undergraduate and beginning graduate
students, this book provides a first taste of the theory of Lie
groups as an appetiser for a more substantial further course.
Lie theoretic ideas lie at the heart of much of standard
undergraduate linear algebra and exposure to them can inform
or ¡motivate the study of the latter.
The main focus is on matrix groups, i.e., closed subgroups of
real and complex general linear groups. The first part studies
examples and describes the classical families of simply
connected compact groups. The second part introduces the
idea of a Lie group and studies the associated notion of a
homogeneous space using orbits of smooth actions.
Throughout, the emphasis is oh providing an approach that is
accessible to readers equipped with a standard undergraduate
toolkit of algebra and analysis. Although the formal prerequisites
are kept as low level as possible, the subject matter is
sophisticated and contains many of the key themes of the fully
developed theory, preparing students for a more standard and
abstract course in Lie theory and differential geometry.
The Springer Undergraduate Mathematics Series (SUMS) is
designed for undergraduates in the mathematical sciences.
From core foundational material to final year topics, SUMS
books take a fresh and modern approach and are ideal for self-
study or for a one- or two-semester course. Each book includes
numerous examples, problems and fully-worked solutions. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Baker, Andrew 1953- |
author_GND | (DE-588)123051479 |
author_facet | Baker, Andrew 1953- |
author_role | aut |
author_sort | Baker, Andrew 1953- |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV020850110 |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 |
callnumber-search | QA174.2 |
callnumber-sort | QA 3174.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
classification_tum | MAT 225f MAT 204f |
ctrlnum | (OCoLC)608884959 (DE-599)BVBBV020850110 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01811nam a22004458c 4500</leader><controlfield tag="001">BV020850110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051028s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852334703</subfield><subfield code="9">1-85233-470-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)608884959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020850110</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA174.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 204f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, Andrew</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123051479</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix groups</subfield><subfield code="b">an introduction to Lie group theory</subfield><subfield code="c">Andrew Baker</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 330 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer undergraduate mathematics series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizengruppe</subfield><subfield code="0">(DE-588)4169127-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizengruppe</subfield><subfield code="0">(DE-588)4169127-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UBRegensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014171832</subfield></datafield></record></collection> |
id | DE-604.BV020850110 |
illustrated | Illustrated |
index_date | 2024-07-02T13:19:33Z |
indexdate | 2024-07-09T20:26:36Z |
institution | BVB |
isbn | 1852334703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014171832 |
oclc_num | 608884959 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-703 DE-11 DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-703 DE-11 DE-29T |
physical | XI, 330 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Springer undergraduate mathematics series |
spelling | Baker, Andrew 1953- Verfasser (DE-588)123051479 aut Matrix groups an introduction to Lie group theory Andrew Baker 3. print. London [u.a.] Springer 2006 XI, 330 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer undergraduate mathematics series Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Matrizengruppe (DE-588)4169127-1 gnd rswk-swf Matrizengruppe (DE-588)4169127-1 s DE-604 Lie-Gruppe (DE-588)4035695-4 s Digitalisierung UBRegensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Baker, Andrew 1953- Matrix groups an introduction to Lie group theory Lie-Gruppe (DE-588)4035695-4 gnd Matrizengruppe (DE-588)4169127-1 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4169127-1 |
title | Matrix groups an introduction to Lie group theory |
title_auth | Matrix groups an introduction to Lie group theory |
title_exact_search | Matrix groups an introduction to Lie group theory |
title_exact_search_txtP | Matrix groups an introduction to Lie group theory |
title_full | Matrix groups an introduction to Lie group theory Andrew Baker |
title_fullStr | Matrix groups an introduction to Lie group theory Andrew Baker |
title_full_unstemmed | Matrix groups an introduction to Lie group theory Andrew Baker |
title_short | Matrix groups |
title_sort | matrix groups an introduction to lie group theory |
title_sub | an introduction to Lie group theory |
topic | Lie-Gruppe (DE-588)4035695-4 gnd Matrizengruppe (DE-588)4169127-1 gnd |
topic_facet | Lie-Gruppe Matrizengruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014171832&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bakerandrew matrixgroupsanintroductiontoliegrouptheory |