Principles of enhanced heat transfer:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton u.a.
Taylor & Francis
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 795 S. Ill., graph. Darst. CD-ROM (12 cm) |
ISBN: | 1591690145 9781591690146 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV020003500 | ||
003 | DE-604 | ||
005 | 20180115 | ||
007 | t | ||
008 | 050819s2005 ad|| |||| 00||| engod | ||
020 | |a 1591690145 |9 1-59169-014-5 | ||
020 | |a 9781591690146 |9 978-1-59169-014-6 | ||
035 | |a (OCoLC)56591305 | ||
035 | |a (DE-599)BVBBV020003500 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-573 |a DE-703 |a DE-92 |a DE-1050 | ||
050 | 0 | |a TJ260 | |
082 | 0 | |a 621.402/2 |2 22 | |
084 | |a UG 2500 |0 (DE-625)145618: |2 rvk | ||
084 | |a MTA 720f |2 stub | ||
100 | 1 | |a Webb, Ralph L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of enhanced heat transfer |c Ralph L. Webb ; Nae-Hyun Kim |
250 | |a 2. ed. | ||
264 | 1 | |a Boca Raton u.a. |b Taylor & Francis |c 2005 | |
300 | |a XXII, 795 S. |b Ill., graph. Darst. |e CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Heat exchangers | |
650 | 4 | |a Heat |x Transmission | |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kim, Nae-Hyun |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013325182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013325182 |
Datensatz im Suchindex
_version_ | 1804133555705479168 |
---|---|
adam_text | PRINCIPL OF ENHANCED HEAT TRANSFER S E C O N D EDITION RALPH L WEBB
NAE-HYUN KIM TAYLOR & FRANCIS TAYLOR & FRANCIS GROUP BOCA RATON LONDON
NEW YORK SINGAPORE TABLE OF CONTENTS PREFACE XXI CHAPTER 1: INTRODUCTION
TO ENHANCED HEAT TRANSFER 1 1.1 INTRODUCTION 1 1.2 THE ENHANCEMENT
TECHNIQUES 3 1.2.1 PASSIVE TECHNIQUES 3 1.2.2 ACTIVE TECHNIQUES 7 1.2.3
TECHNIQUE VS. MODE 10 1.3 PUBLISHED LITERATURE 11 1.3.1 GENERAL REMARKS
11 1.3.2 U.S. PATENT LITERATURE 13 1.3.3 MANUFACTURER S INFORMATION 18
1.4 BENEFITS OF ENHANCEMENT 19 1.5 COMMERCIAL APPLICATIONS OF ENHANCED
SURFACES 21 1.5.1 HEAT (AND MASS) EXCHANGER TYPES OF INTEREST 21 1.5.2
ILLUSTRATIONS OF ENHANCED TUBULAR SURFACES 21 1.5.3 ENHANCED FIN
GEOMETRIES FOR GASES 23 1.5.4 PLATE-TYPE HEAT EXCHANGERS 24 1.5.5
COOLING TOWER PACKINGS 25 1.5.6 DISTILLATION AND COLUMN PACKINGS 26
1.5.7 FACTORS AFFECTING COMMERCIAL DEVELOPMENT 26 1.6 DEFINITION OF HEAT
TRANSFER AREA 28 1.7 POTENTIAL FOR ENHANCEMENT 29 1.7.1 PEC EXAMPLE 1.1
29 VI I TABLE OF CONTENTS 1.7.2 PEC EXAMPLE 1.2 30 NOMENCLATURE 30
REFERENCES , 31 CHAPTER 2: HEAT TRANSFER FUNDAMENTALS 33 2.1
INTRODUCTION 33 2.2 HEAT EXCHANGER DESIGN THEORY 34 2.2.1 THERMAL
ANALYSIS 35 2.2.2 HEAT EXCHANGER DESIGN METHODS 37 2.2.3 COMPARISON OF
LMTD AND NTU DESIGN METHODS 39 2.3 FIN EFFICIENCY 40 2.4 HEAT TRANSFER
COEFFICIENTS AND FRICTION FACTORS 41 2.4.1 LAMINAR FLOW OVER FLAT PLATE
42 2.4.2 LAMINAR FLOW IN DUCTS 42 2.4.3 TURBULENT FLOW IN DUCTS 42 2.4.4
TUBE BANKS (SINGLE-PHASE FLOW) 44 2.4.5 FILM CONDENSATION 44 2.4.6
NUCLEATE BOILING 45 2.5 CORRECTION FOR VARIATION OF FLUID PROPERTIES 46
2.5.1 EFFECT OF CHANGING FLUID TEMPERATURE 46 2.5.2 EFFECT LOCAL
PROPERTY VARIATION 46 2.6 REYNOLDS ANALOGY 49 2.7 FOULING OF HEAT
TRANSFER SURFACES 51 2.8 CONCLUSIONS 52 NOMENCLATURE 52 REFERENCES 54
CHAPTER 3: PERFORMANCE EVALUATION CRITERIA FOR SINGLE-PHASE FLOW 55 3.1
PERFORMANCE EVALUATION CRITERIA (PEC) 55 3.2 PEC FOR HEAT EXCHANGERS 56
3.3 PEC FOR SINGLE-PHASE FLOW 57 3.3.1 OBJECTIVE FUNCTION AND
CONSTRAINTS 57 3.3.2 ALGEBRAIC FORMULATION OF THE PEC 58 3.3.3 SIMPLE
SURFACE PERFORMANCE COMPARISON 59 3.3.4 CONSTANT FLOW RATE 60 3.3.5
FIXED FLOW AREA 60 TABLE OF CONTENTS I VII 3.4 THERMAL RESISTANCE ON
BOTH SIDES 61 3.5 RELATIONS FOR ST AND/ 63 3.6 HEAT EXCHANGER
EFFECTIVENESS 63 3.7 EFFECT OF REDUCED EXCHANGER FLOW RATE 64 3.8 FLOW
NORMAL TO FINNED TUBE BANKS 65 3.9 VARIANTS OF THE PEC 66 3.10 COMMENTS
ON OTHER PERFORMANCE INDICATORS 67 3.10.1 SHAH 67 3.10.2 SOLAND AND
COLLEAGUES 69 3.11 EXERGY-BASED PEC ANALYSIS 69 3.12 CONCLUSIONS 72
NOMENCLATURE 72 REFERENCES 74 CHAPTER 4: PERFORMANCE EVALUATION CRITERIA
FOR TWO-PHASE HEAT EXCHANGERS 75 4.1 INTRODUCTION 75 4.2 OPERATING
CHARACTERISTICS OF TWO-PHASE HEAT EXCHANGERS 75 4.3 ENHANCEMENT IN
TWO-PHASE HEAT EXCHANGE SYSTEMS 77 4.3.1 WORK-CONSUMING SYSTEMS 78 4.3.2
WORK-PRODUCING SYSTEMS 79 4.3.3 HEAT-ACTUATED SYSTEMS 80 4.4 PEC FOR
TWO-PHASE HEAT EXCHANGE SYSTEMS 81 4.5 PEC CALCULATION METHOD 81 4.5.1
PEC EXAMPLE 4.1 82 4.5.2 PEC EXAMPLE 4.2 84 4.6 CONCLUSIONS 85
NOMENCLATURE 86 REFERENCES 87 CHAPTER 5: PLATE-AND-FIN EXTENDED SURFACES
89 5.1 INTRODUCTION 89 VIII I TABLE OF CONTENTS 5.2 OFFSET-STRIP FIN 91
5.2.1 ENHANCEMENT PRINCIPLE 91 5.2.2 PEC EXAMPLE 5.1 94 5.2.3
ANALYTICALLY BASED MODELS FORY AND/VS. RE 95 5.2.4 TRANSITION FROM
LAMINAR TO TURBULENT REGION 96 5.2.5 CORRELATIONS FORJ AND/VS. RE 97
5.2.6 USE OF OSF WITH LIQUIDS 99 5.2.7 EFFECT,OF PERCENT FIN OFFSET 99
5.2.8 EFFECT OF BURRED EDGES 100 5.3 LOUVER FIN 100 5.3.1 HEAT TRANSFER
AND FRICTION CORRELATIONS 101 5.3.2 FLOW STRUCTURE IN THE LOUVER FIN
ARRAY 103 5.3.3 ANALYTICAL MODEL FOR HEAT TRANSFER AND FRICTION 108
5.3.4 PEC EXAMPLE 5.2 109 5.4 CONVEX LOUVER FIN 110 5.5 WAVY FIN 115 5.6
THREE-DIMENSIONAL CORRUGATED FINS 116 5.7 PERFORATED FIN 118 5.8 PIN
FINS AND WIRE MESH 119 5.9 VORTEX GENERATORS 122 5.9.1 TYPES OF VORTEX
GENERATORS 122 5.9.2 VORTEX GENERATORS ON A PLATE-FIN SURFACE 124 5.10
METAL FOAM FIN 126 5.11 PLAIN FIN 129 5.11.1 PEC EXAMPLE 5.3 130 5.12
ENTRANCE LENGTH EFFECTS 130 5.13 PACKINGS FOR GAS-GAS REGENERATORS 132
5.14 NUMERICAL SIMULATION 133 5.14.1 OFFSET-STRIP FINS 133 5.14.2 LOUVER
FINS 134 5.14.3 WAVY CHANNELS 135 5.14.4 CHEVRON PLATES 136 5.14.5
SUMMARY 136 5.15 CONCLUSIONS 137 NOMENCLATURE 137 REFERENCES 139 TABLE
OF CONTENTS I IX CHAPTER 6: EXTERNALLY FINNED TUBES 145 6.1 INTRODUCTION
145 6.2 THE GEOMETRIC PARAMETERS AND THE REYNOLDS NUMBER 148 6.2.1
DIMENSIONLESS VARIABLES 148 6.2.2 DEFINITION OF REYNOLDS NUMBER 149
6.2.3 DEFINITION OF THE FRICTION FACTOR 150 6.2.4 SOURCES OF DATA 150
6.3 PLAIN PLATE-FINS ON ROUND TUBES 150 6.3.1 EFFECT OF FIN SPACING 151
6.3.2 CORRELATIONS FOR STAGGERED TUBE GEOMETRIES 153 6.3.3 CORRELATIONS
FOR INLINE TUBE GEOMETRIES 156 6.4 PLAIN INDIVIDUALLY FINNED TUBES 156
6.4.1 CIRCULAR FINS WITH STAGGERED TUBES 156 6.4.2 LOW INTEGRAL-FIN
TUBES 158 6.5 ENHANCED PLATE FIN GEOMETRIES WITH ROUND TUBES 158 6.5.1
WAVY FIN 158 6.5.2 OFFSET STRIP FINS 161 6.5.3 CONVEX LOUVER FINS 162
6.5.4 LOUVEREDFIN 163 6.5.5 PERFORATED FINS 165 6.5.6 MESH FINS 166
6.5.7 VORTEX GENERATORS 167 6.6 ENHANCED CIRCULAR FIN GEOMETRIES 171
6.6.1 ILLUSTRATIONS OF ENHANCED FIN GEOMETRIES 171 6.6.2 SPINE OR
SEGMENTED FINS 172 6.6.3 WIRE LOOP FINS 174 6.7 OVAL AND FLAT TUBE
GEOMETRIES 175 6.7.1 OVAL VS. CIRCULAR INDIVIDUALLY FINNED TUBES 175
6.7.2 FLAT EXTRUDED ALUMINUM TUBES WITH INTERNAL MEMBRANES 177 6.7.3
PLATE-AND-FIN AUTOMOTIVE RADIATORS 178 6.7.4 VORTEX GENERATORS ON FLAT
OR OVAL FIN-TUBE GEOMETRY 179 6.8 ROW EFFECTS * STAGGERED AND INLINE
LAYOUTS 180 6.9 HEAT TRANSFER COEFFICIENT DISTRIBUTION (PLAIN FINS) 184
6.9.1 EXPERIMENTAL METHODS 184 6.9.2 PLATE FIN-AND-TUBE MEASUREMENTS 184
6.9.3 CIRCULAR FIN-AND-TUBE MEASUREMENTS 186 X I TABLE OF CONTENTS 6.10
PERFORMANCE COMPARISON OF DIFFERENT GEOMETRIES 188 6.10.1 GEOMETRIES
COMPARED 188 6.10.2 ANALYSIS METHOD 189 6.10.3 CALCULATED RESULTS 191
6.11 PROGRESS ON NUMERICAL SIMULATION 192 6.12 RECENT PATENTS ON
ADVANCED FIN GEOMETRIES 193 6.13 HYDROPHII^C COATINGS 194 6.14
CONCLUSIONS 197 NOMENCLATURE 198 REFERENCES 201 CHAPTER 7: INSERT
DEVICES FOR SINGLE-PHASE FLOW 207 7.1 INTRODUCTION 207 7.2 TWISTED TAPE
INSERT 211 7.2.1 LAMINAR FLOW DATA 213 7.2.2 PREDICTIVE METHODS FOR
LAMINAR FLOW 216 7.2.3 TURBULENT FLOW 220 7.2.4 PEC EXAMPLE 7.1 224
7.2.5 TWISTED TAPES IN ANNULI 225 7.2.6 TWISTED TAPES IN ROUGH TUBES 225
7.3 SEGMENTED TWISTED TAPE INSERT 226 7.4 DISPLACED ENHANCEMENT DEVICES
228 7.4.1 TURBULENT FLOW 228 7.4.2 LAMINAR FLOW 230 7.4.3 PEC EXAMPLE
7.2 231 7.5 WIRE COIL INSERTS 232 7.5.1 LAMINAR FLOW 234 7.5.2 TURBULENT
FLOW 235 7.6 EXTENDED SURFACE INSERT 235 7.7 TANGENTIAL INJECTION
DEVICES 236 7.8 CONCLUSIONS 238 NOMENCLATURE 239 REFERENCES 241 CHAPTER
8: INTERNALLY FINNED TUBES AND ANNULI 245 8.1 INTRODUCTION 245 TABLE OF
CONTENTS I XI 8.2 INTERNALLY FINNED TUBES 246 8.2.1 LAMINAR FLOW 247
8.2.2 TURBULENT FLOW 257 8.2.3 PEC EXAMPLE 8.1 265 8.3 SPIRALLY FLUTED
TUBES 266 8.3.1 SPIRALLY FLUTED TUBE 268 8.3.2 SPIRALLY INDENTED TUBE
269 8.4 ADVANCED INTERNAL FIN GEOMETRIES 272 8.5 FINNED ANNULI 275 8.6
CONCLUSIONS 277 NOMENCLATURE 278 REFERENCES 280 CHAPTER 9: INTEGRAL
ROUGHNESS 285 9.1 INTRODUCTION 285 9.2 ROUGHNESS WITH LAMINAR FLOW 287
9.2.1 LAMINAR FLOW IN ROUGHENED CIRCULAR TUBES 287 9.2.2 LAMINAR FLOW IN
ROUGHENED FLAT TUBES 290 9.3 HEAT-MOMENTUM TRANSFER ANALOGY CORRELATION
295 9.3.1 FRICTION SIMILARITY LAW 295 9.3.2 PEC EXAMPLE 9.1 296 9.3.3
HEAT TRANSFER SIMILARITY LAW 297 9.4 TWO-DIMENSIONAL ROUGHNESS 300 9.4.1
TRANSVERSE RIB ROUGHNESS 301 9.4.2 INTEGRAL HELICAL-RIB ROUGHNESS 305
9.4.3 WIRE COIL INSERTS 306 9.4.4 CORRUGATED TUBE ROUGHNESS 310 9.4.5
PEC EXAMPLE 9.2 313 9.5 THREE-DIMENSIONAL ROUGHNESS 314 9.6 PRACTICAL
ROUGHNESS APPLICATIONS 315 9.6.1 TUBES WITH INSIDE ROUGHNESS 315 9.6.2
ROD BUNDLES AND ANNULI 319 9.6.3 RECTANGULAR CHANNELS 319 9.6.4 OUTSIDE
ROUGHNESS FOR CROSS FLOW 325 9.7 GENERAL PERFORMANCE CHARACTERISTICS 326
9.7.1 ST AND/VS. REYNOLDS NUMBER 326 XII I TABLE OF CONTENTS 9.7.2 OTHER
CORRELATING METHODS 328 9.7.3 PRANDTL NUMBER DEPENDENCE 330 9.8 HEAT
TRANSFER DESIGN METHODS 333 9.8.1 DESIGN METHOD 1 333 9.8.2 DESIGN
METHOD 2 334 9.9 PREFERRED ROUGHNESS TYPE AND SIZE 334 9.9.1 ROUGHNESS
TYPE 334 9.9.2 PEC EXAMPLE 9.3 335 9.10 NUMERICAL SIMULATION 336 9.10.1
PREDICTIONS FOR TRANSVERSE-RIB ROUGHNESS 337 9.10.2 EFFECT OF RIB SHAPE
339 9.10.3 THE DISCRETE-ELEMENT PREDICTIVE MODEL 340 9.11 CONCLUSIONS
346 NOMENCLATURE 347 REFERENCES 350 CHAPTER 10: FOULING ON ENHANCED
SURFACES 357 10.1 INTRODUCTION 357 10.2 FOULING FUNDAMENTALS 359 10.2.1
PANICULATE FOULING 360 10.3 FOULING OF GASES ON FINNED SURFACES 362 10.4
SHELL-SIDE FOULING OF LIQUIDS 366 10.4.1 LOW RADIAL FINS 366 10.4.2
AXIAL FINS AND RIBS IN ANNULUS 366 10.4.3 RIBS IN ROD BUNDLE 367 10.5
FOULING OF LIQUIDS IN INTERNALLY FINNED TUBES 368 10.6 LIQUID FOULING IN
ROUGH TUBES 370 10.6.1 ACCELERATED PANICULATE FOULING 370 10.6.2
LONG-TERM FOULING 372 10.7 LIQUID FOULING IN PLATE-FIN GEOMETRY 375 10.8
CORRELATIONS FOR FOULING IN ROUGH TUBES 376 10.9 MODELING OF FOULING IN
ENHANCED TUBES 378 10.9.1 EXAMPLE PROBLEM 10.1 382 10.10 FOULING IN
PLATE HEAT EXCHANGERS 382 10.11 CONCLUSIONS 384 TABLE OF CONTENTS I XIII
NOMENCLATURE 384 REFERENCES 386 CHAPTER 11: POOL BOILING AND THIN FILM
EVAPORATION 389 11.1 INTRODUCTION 389 11.2 EARLY WORK ON ENHANCEMENT
(1931-1962) 390 11.3 SUPPORTING FUNDAMENTAL STUDIES 390 11.4 TECHNIQUES
EMPLOYED FOR ENHANCEMENT 393 11.4.1 ABRASIVE TREATMENT 393 11.4.2 OPEN
GROOVES 394 11.4.3 THREE-DIMENSIONAL CAVITIES 394 11.4.4 ETCHED SURFACES
396 11.4.5 ELECTROPLATING 396 11.4.6 PIERCED THREE-DIMENSIONAL COVER
SHEETS 396 11.4.7 ATTACHED WIRE AND SCREEN PROMOTERS 397 11.4.8
NONWETTING COATINGS 399 11.4.9 OXIDE AND CERAMIC COATINGS 402 11.4.10
POROUS SURFACES 402 11.4.11 STRUCTURED SURFACES (INTEGRAL ROUGHNESS) 409
11.4.12 COMBINATION OF STRUCTURED AND POROUS SURFACES 413 11.4.13
COMPOSITE SURFACES 413 11.5 SINGLE-TUBE POOL BOILING TESTS OF ENHANCED
SXURFACES 414 11.6 THEORETICAL FUNDAMENTALS 419 11.6.1 LIQUID SUPERHEAT
419 11.6.2 EFFECT OF CAVITY SHAPE AND CONTACT ANGLE ON SUPERHEAT 420
11.6.3 ENTRAPMENT OF VAPOR IN CAVITIES 422 11.6.4 EFFECT OF DISSOLVED
GASES 425 11.6.5 NUCLEATION AT A SURFACE CAVITY 426 11.6.6 BUBBLE
DEPARTURE DIAMETER 427 11.6.7 BUBBLE DYNAMICS 428 11.7 BOILING
HYSTERESIS AND ORIENTATION EFFECTS 428 11.7.1 HYSTERESIS EFFECTS 428
11.7.2 SIZE AND ORIENTATION EFFECTS 430 11.8 BOILING MECHANISM ON
ENHANCED SURFACES 431 11.8.1 BASIC PRINCIPLES EMPLOYED 431 11.8.2
VISUALIZATION OF BOILING IN SUBSURFACE TUNNELS 432 11.8.3 BOILING
MECHANISM IN SUBSURFACE TUNNELS 436 11.8.4 CHIEN AND WEBB PARAMETRIC
BOILING STUDIES 438 XIV I TABLE OF CONTENTS 11.9 PREDICTIVE METHODS FOR
STRUCTURED SURFACES 442 11.9.1 EMPIRICAL CORRELATIONS 442 11.9.2
NAKAYAMA ET AL. [1980B] MODEL 442 11.9.3 CHIEN AND WEBB MODEL 444 11.9.4
RAMASWAMY ET AL. MODEL 448 11.9.5 JIANG ET AL. MODEL 448 11.9.6 OTHER
MODELS 450 11.9.7 EVALUATION OF MODELS 450 11.10 BOILING MECHANISM ON
POROUS SURFACES 451 11.10.1 O NEILL ET AL. THIN FILM CONCEPT 451 11.10.2
KOVALEV ET AL. CONCEPT 451 11.11 PREDICTIVE METHODS FOR POROUS SURFACES
453 11.11.1 O NEILL ET AL. MODEL 453 11.11.2 KOVALOV ET AL. MODEL 455
11.11.3 NISHIKAWA ET AL. CORRELATION 457 11.11.4 ZHANG AND ZHANG
CORRELATION 45 8 11.12 CRITICAL HEAT FLUX 459 11.13 ENHANCEMENT OF THIN
FILM EVAPORATION 460 11.14 CONCLUSIONS 463 NOMENCLATURE 464 REFERENCES
466 CHAPTER 12: VAPOR SPACE CONDENSATION 473 12.1 INTRODUCTION 473
12.1.1 CONDENSATION FUNDAMENTALS 474 12.1.2 BASIC APPROACHES TO ENHANCED
FILM CONDENSATION 477 12.2 DROPWISE CONDENSATION 477 12.3 SURVEY OF
ENHANCEMENT METHODS 479 12.3.1 COATED SURFACES 480 12.3.2 ROUGHNESS 482
12.3.3 HORIZONTAL INTEGRAL-FIN TUBES 482 12.3.4 CORRUGATED TUBES 493
12.3.5 SURFACE TENSION DRAINAGE 494 12.3.6 ELECTRIC FIELDS 501 12.4
SURFACE TENSION DRAINED CONDENSATION 501 12.4.1 FUNDAMENTALS 501 12.4.2
ADAMEK [1981] GENERALIZED ANALYSIS 506 TABLE OF CONTENTS I XV 12.4.3
PRACTICAL FIN PROFILES 509 12.4.4 PREDICTION FOR TRAPEZOIDAL FIN
SHAPES 511 12.5 HORIZONTAL INTEGRAL-FIN TUBE 517 12.5.1 THE BEATTY AND
KATZ [1948] MODEL 517 12.5.2 PRECISE SURFACE TENSION-DRAINED MODELS 518
12.5.3 APPROXIMATE SURFACE TENSION-DRAINED MODELS 521 12.5.4 COMPARISON
OF THEORY AND EXPERIMENT 523 12.6 HORIZONTAL TUBE BANKS 523 12.6.1
CONDENSATION WITH VAPOR SHEAR 523 12.6.2 CONDENSATE INUNDATION WITHOUT
VAPOR SHEAR 525 12.6.3 CONDENSATE DRAINAGE PATTERN 528 12.6.4 PREDICTION
OF THE CONDENSATION COEFFICIENT 532 12.7 CONCLUSIONS 533 APPENDIX 12.A:
THE KEDZIERSKI AND WEBB FIN PROFILE SHAPES 534 APPENDIX 12.B: FIN
EFFICIENCY IN THE FLOODED REGION 535 NOMENCLATURE 535 REFERENCES 538
CHAPTER 13: CONVECTIVE VAPORIZATION 545 13.1 INTRODUCTION 545 13.2
FUNDAMENTALS 546 13.2.1 FLOW PATTERNS 546 13.2.2 CONVECTIVE VAPORIZATION
IN TUBES 547 13.2.3 TWO-PHASE PRESSURE DROP 552 13.2.4 EFFECT OF FLOW
ORIENTATION ON FLOW PATTERN 553 13.2.5 CONVECTIVE VAPORIZATION IN TUBE
BUNDLES 554 13.2.6 CRITICAL HEAT FLUX 554 13.3 ENHANCEMENT TECHNIQUES IN
TUBES 555 13.3.1 INTERNAL FINS 555 13.3.2 SWIRL FLOW DEVICES 559 13.3.3
ROUGHNESS 562 13.3.4 COATED SURFACES 566 13.3.5 PERFORATED FOIL INSERTS
568 13.3.6 POROUS MEDIA 568 13.3.7 COILED TUBES AND RETURN BENDS 569
13.4 THE MICROFIN TUBE 569 13.4.1 EARLY WORK ON THE MICROFIN TUBE 572
XVI I TABLE OF CONTENTS 13.4.2 RECENT WORK ON THE MICROFIN TUBE 576
13.4.3 SPECIAL MICROFIN GEOMETRIES 578 13.4.4 MICROFIN VAPORIZATION DATA
580 13.5 MINICHANNELS 582 13.6 CRITICAL HEAT FLUX (CHF) 586 13.6.1
TWISTED TAPE 587 13.6.2 GROOVED TUBES 588 13.6.3 CORRUGATED TUBES 588
13.6.4 MESH INSERTS 588 13.7 PREDICTIVE METHODS FOR IN-TUBE FLOW 589
13.7.1 HIGH INTERNAL FINS 589 13.7.2 MICROFINS 590 13.7.3 TWISTED TAPE
INSERTS 592 13.7.4 CORRUGATED TUBES 592 13.7.5 POROUS COATINGS 592 13.8
TUBE BUNDLES 592 13.8.1 CONVECTIVE EFFECTS IN TUBE BUNDLES 593 13.8.2
TUBE BUNDLE CONVECTIVE VAPORIZATION DATA 596 13.8.3 EFFECT OF SPACING
BETWEEN TUBES 599 13.8.4 CONVECTIVE VAPORIZATION MODELS 600 13.8.5
STARTING HYSTERESIS IN TUBE BUNDLES 601 13.9 PLATE-FIN HEAT EXCHANGERS
602 13.10 THIN FILM EVAPORATION 604 13.10.1 HORIZONTAL TUBES 604 13.10.2
VERTICAL TUBES 608 13.11 CONCLUSIONS 609 NOMENCLATURE 610 REFERENCES 612
CHAPTER 14: CONVECTIVE CONDENSATION 621 14.1 INTRODUCTION 621 14.2
FORCED CONDENSATION INSIDE TUBES 622 622 626 627 629 629 630 14.2.1
14.2.2 14.2.3 14.2.4 14.2.5 INTERNALLY FINNED GEOMETRY TWISTED-TAPE
INSERTS ROUGHNESS WIRE COIL INSERTS COILED TUBES AND RETURN BENDS 14.3
MICROFIN TUBE TABLE OF CONTENTS I XVII 14.3.1 MICROFIN GEOMETRY DETAILS
632 14.3.2 OPTIMIZATION OF INTERNAL GEOMETRY 633 14.3.3 CONDENSATION
MECHANISM IN MICROFIN TUBES 636 14.3.4 CONVECTIVE CONDENSATION IN
SPECIAL MICROFIN GEOMETRIES 640 14.4 FLAT TUBE AUTOMOTIVE CONDENSERS 641
14.4.1 CONDENSATION DATA FOR FLAT, EXTRUDED TUBES 643 14.4.2 OTHER
PREDICTIVE METHODS OF CONDENSATION IN FLAT TUBES 646 14.5 PLATE-TYPE
HEAT EXCHANGERS 649 14.6 NONCONDENSIBLE GASES 649 14.7 PREDICTIVE
METHODS FOR CIRCULAR TUBES 651 14.7.1 HIGH INTERNAL FINS 651 14.7.2 WIRE
LOOP INTERNAL FINS 652 14.7.3 TWISTED TAPES 653 14.7.4 ROUGHNESS 654
14.7.5 MICROFINS 654 14.8 CONCLUSIONS 657 NOMENCLATURE 658 REFERENCES
659 CHAPTER 15: ENHANCEMENT USING ELECTRIC FIELDS 665 * 15.1
INTRODUCTION 665 15.2 ELECTRODE DESIGN AND PLACEMENT 667 15.3
SINGLE-PHASE FLUIDS 669 15.3.1 ENHANCEMENT ON GAS FLOW 670 15.3.2
ENHANCEMENT ON LIQUID FLOW 671 15.3.3 NUMERICAL STUDIES 672 15.4
CONDENSATION 672 15.4.1 FUNDAMENTAL UNDERSTANDING 672 15.4.2 VAPOR SPACE
CONDENSATION 675 15.4.3 IN-TUBE CONDENSATION 677 15.4.4 FALLING FILM
EVAPORATION 677 15.4.5 CORRELATIONS 679 15.5 BOILING 680 15.5.1
FUNDAMENTAL UNDERSTANDING 680 15.5.2 POOL BOILING 682 15.5.3 CONVECTIVE
VAPORIZATION 682 15.5.4 CRITICAL HEAT FLUX 683 15.5.5 CORRELATIONS 683
XVIII I TABLE OF CONTENTS 15.6 CONCLUSIONS 684 NOMENCLATURE 684
REFERENCES 685 CHAPTER 16: SIMULTANEOUS HEAT AND MASS TRANSFER 689 16.1
INTRODUCTION 689 16.2 MASS TRANIJFER RESISTANCE IN THE GAS PHASE 690
16.2.1 CONDENSATION WITH NONCONDENSIBLE GASES 690 16.2.2 EVAPORATION
INTO AIR 692 16.2.3 DEHUMIDIFYING FINNED-TUBE HEAT EXCHANGERS 694 16.2.4
WATER FILM ENHANCEMENT OF FINNED-TUBE EXCHANGER 695 16.3 CONTROLLING
RESISTANCE IN LIQUID PHASE 699 16.4 SIGNIFICANT RESISTANCE IN BOTH
PHASES 702 16.5 CONCLUSIONS 702 NOMENCLATURE 703 REFERENCES 704 CHAPTER
17: ADDITIVES FOR GASES AND LIQUIDS 707 17.1 INTRODUCTION 707 17.2
ADDITIVES FOR SINGLE-PHASE LIQUIDS 707 17.2.1 SOLID PARTICLES 707 17.2.2
PEC EXAMPLE 17.1 710 17.2.3 GAS BUBBLES 710 17.2.4 SUSPENSIONS IN DILUTE
POLYMER AND SURFACTANT SOLUTIONS 710 17.3 ADDITIVES FOR SINGLE-PHASE
GASES 712 17.3.1 SOLID ADDITIVES 712 17.3.2 LIQUID ADDITIVES 715 17.4
ADDITIVES FOR BOILING 715 17.5 ADDITIVES FOR CONDENSATION AND ABSORPTION
718 17.6 CONCLUSIONS 719 NOMENCLATURE 719 REFERENCES 720 CHAPTER 18:
MICROCHANNELS 723 18.1 INTRODUCTION 723 18.2 FRICTION IN SINGLE
MICROCHANNELS 725 TABLE OF CONTENTS I XIX 18.3 FRICTION IN A SINGLE
CHANNEL VS. MULTICHANNELS 727 18.4 SINGLE-PHASE HEAT TRANSFER IN
MICROCHANNELS 731 18.4.1 SINGLE CHANNEL FLOW 731 18.4.2 HEAT TRANSFER IN
MULTIPLE MICROCHANNELS 733 18.5 MANIFOLD SELECTION AND DESIGN 733 18.5.1
SINGLE-PHASE FLOW 734 18.5.2 TWO-PHASE FLOW 736 18.6 NUMERICAL
SIMULATION OF FLOW IN MANIFOLDS 737 18.7 TWO-PHASE HEAT TRANSFER IN
MICROCHANNELS 738 18.8 CONCLUSIONS 741 NOMENCLATURE 742 REFERENCES 743
CHAPTER 19: ELECTRONIC COOLING HEAT TRANSFER 747 19.1 INTRODUCTION 747
19.2 COMPONENT THERMAL RESISTANCES 748 19.3 LIMITS ON DIRECT HEAT
REMOVAL WITH AIR-COOLING 750 19.3.1 PEC EXAMPLE 19.1, ENHANCED FIN
GEOMETRY HEAT SINK 753 19.4 SECOND GENERATION INDHR DEVICES FOR HEAT
REMOVAL AT HOT SOURCE 754 19.4.1 SINGLE-PHASE FLUIDS 754 19.4.2
TWO-PHASE FLUIDS 755 19.4.3 HEAT PIPE 756 19.4.4 NUCLEATE BOILING 756
19.4.5 FORCED CONVECTION VAPORIZATION 760 19.4.6 SPRAY COOLING 761 19.5
DISCUSSION OF ADVANCED HEAT REMOVAL CONCEPTS 761 19.5.1 JET
IMPINGEMENT/SPRAY COOLING DEVICES 761 19.5.2 SINGLE-PHASE MICROCHANNEL
COOLING 765 19.5.3 TWO-PHASE MICROCHANNEL COOLING 765 19.5.4 ENHANCED
TWO-PHASE FORCED CONVECTION COOLING 767 19.6 REMOTE HEAT-EXCHANGERS FOR
INDHR 767 19.6.1 AIR-COOLED AMBIENT HEAT EXCHANGERS 767 19.6.2
CONDENSING SURFACES 770 19.6.3 DESIGN FOR MULTIPLE HEAT SOURCES 771 19.7
SYSTEM PERFORMANCE FOR THE INDHR SYSTEM 771 XX I TABLE OF CONTENTS 19.8
CONCLUSIONS 772 NOMENCLATURE 772 REFERENCES 773 PROBLEM SUPPLEMENT 775
INDEX 789
|
any_adam_object | 1 |
author | Webb, Ralph L. Kim, Nae-Hyun |
author_facet | Webb, Ralph L. Kim, Nae-Hyun |
author_role | aut aut |
author_sort | Webb, Ralph L. |
author_variant | r l w rl rlw n h k nhk |
building | Verbundindex |
bvnumber | BV020003500 |
callnumber-first | T - Technology |
callnumber-label | TJ260 |
callnumber-raw | TJ260 |
callnumber-search | TJ260 |
callnumber-sort | TJ 3260 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UG 2500 |
classification_tum | MTA 720f |
ctrlnum | (OCoLC)56591305 (DE-599)BVBBV020003500 |
dewey-full | 621.402/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/2 |
dewey-search | 621.402/2 |
dewey-sort | 3621.402 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01497nam a2200409 c 4500</leader><controlfield tag="001">BV020003500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050819s2005 ad|| |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1591690145</subfield><subfield code="9">1-59169-014-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781591690146</subfield><subfield code="9">978-1-59169-014-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56591305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020003500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ260</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2500</subfield><subfield code="0">(DE-625)145618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Webb, Ralph L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of enhanced heat transfer</subfield><subfield code="c">Ralph L. Webb ; Nae-Hyun Kim</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton u.a.</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 795 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat exchangers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield><subfield code="x">Transmission</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Nae-Hyun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013325182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013325182</subfield></datafield></record></collection> |
id | DE-604.BV020003500 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:10:35Z |
institution | BVB |
isbn | 1591690145 9781591690146 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013325182 |
oclc_num | 56591305 |
open_access_boolean | |
owner | DE-573 DE-703 DE-92 DE-1050 |
owner_facet | DE-573 DE-703 DE-92 DE-1050 |
physical | XXII, 795 S. Ill., graph. Darst. CD-ROM (12 cm) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Taylor & Francis |
record_format | marc |
spelling | Webb, Ralph L. Verfasser aut Principles of enhanced heat transfer Ralph L. Webb ; Nae-Hyun Kim 2. ed. Boca Raton u.a. Taylor & Francis 2005 XXII, 795 S. Ill., graph. Darst. CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Heat exchangers Heat Transmission Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 s DE-604 Kim, Nae-Hyun Verfasser aut HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013325182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Webb, Ralph L. Kim, Nae-Hyun Principles of enhanced heat transfer Heat exchangers Heat Transmission Wärmeübertragung (DE-588)4064211-2 gnd |
subject_GND | (DE-588)4064211-2 |
title | Principles of enhanced heat transfer |
title_auth | Principles of enhanced heat transfer |
title_exact_search | Principles of enhanced heat transfer |
title_full | Principles of enhanced heat transfer Ralph L. Webb ; Nae-Hyun Kim |
title_fullStr | Principles of enhanced heat transfer Ralph L. Webb ; Nae-Hyun Kim |
title_full_unstemmed | Principles of enhanced heat transfer Ralph L. Webb ; Nae-Hyun Kim |
title_short | Principles of enhanced heat transfer |
title_sort | principles of enhanced heat transfer |
topic | Heat exchangers Heat Transmission Wärmeübertragung (DE-588)4064211-2 gnd |
topic_facet | Heat exchangers Heat Transmission Wärmeübertragung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013325182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT webbralphl principlesofenhancedheattransfer AT kimnaehyun principlesofenhancedheattransfer |