Structured ring spectra:
Within algebraic topology, the prominent role of multiplicative cohomology theories has led to a great deal of foundational research on ring spectra and in the 1990s this gave rise to significant new approaches to constructing categories of spectra and ring-like objects in them. This book contains s...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Schriftenreihe: | London Mathematical Society lecture note series
315 |
Schlagworte: | |
Zusammenfassung: | Within algebraic topology, the prominent role of multiplicative cohomology theories has led to a great deal of foundational research on ring spectra and in the 1990s this gave rise to significant new approaches to constructing categories of spectra and ring-like objects in them. This book contains some important new contributions to the theory of structured ring spectra as well as survey papers describing these and relationships between them. One important aspect is the study of strict multiplicative structures on spectra and the development of obstruction theories to imposing strictly associative and commutative ring structures on spectra. A different topic is the transfer of classical algebraic methods and ideas, such as Morita theory, to the world of stable homotopy. |
Beschreibung: | 236 S. |
ISBN: | 0521603056 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV019883719 | ||
003 | DE-604 | ||
005 | 20050727 | ||
007 | t | ||
008 | 050713s2004 xxu |||| 00||| eng d | ||
010 | |a 2004055294 | ||
020 | |a 0521603056 |c pbk. : alk. paper |9 0-521-60305-6 | ||
035 | |a (OCoLC)55887271 | ||
035 | |a (DE-599)BVBBV019883719 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-824 | ||
050 | 0 | |a QA247 | |
082 | 0 | |a 512/.4 |2 22 | |
084 | |a MAT 160f |2 stub | ||
084 | |a MAT 180f |2 stub | ||
084 | |a MAT 162f |2 stub | ||
245 | 1 | 0 | |a Structured ring spectra |c edited by Andrew Baker ... |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 236 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 315 | |
520 | 3 | |a Within algebraic topology, the prominent role of multiplicative cohomology theories has led to a great deal of foundational research on ring spectra and in the 1990s this gave rise to significant new approaches to constructing categories of spectra and ring-like objects in them. This book contains some important new contributions to the theory of structured ring spectra as well as survey papers describing these and relationships between them. One important aspect is the study of strict multiplicative structures on spectra and the development of obstruction theories to imposing strictly associative and commutative ring structures on spectra. A different topic is the transfer of classical algebraic methods and ideas, such as Morita theory, to the world of stable homotopy. | |
650 | 4 | |a Anneaux (Algèbre) | |
650 | 4 | |a Catégories (Mathématiques) | |
650 | 4 | |a Homotopie | |
650 | 4 | |a Spectre (Mathématiques) | |
650 | 7 | |a Álgebra abstrata (congressos) |2 larpcal | |
650 | 7 | |a Álgebra homológica (congressos) |2 larpcal | |
650 | 4 | |a Rings (Algebra) | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Categories (Mathematics) | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Idealtheorie |0 (DE-588)4161208-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
655 | 7 | |a Modul <Mathematik> |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Idealtheorie |0 (DE-588)4161208-5 |D s |
689 | 0 | 1 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | 2 | |a Modul <Mathematik> |A f |
689 | 0 | 3 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Baker, Andrew |e Sonstige |4 oth | |
830 | 0 | |a London Mathematical Society lecture note series |v 315 |w (DE-604)BV000000130 |9 315 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-013207822 |
Datensatz im Suchindex
_version_ | 1804133414674104320 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV019883719 |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247 |
callnumber-search | QA247 |
callnumber-sort | QA 3247 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 160f MAT 180f MAT 162f |
ctrlnum | (OCoLC)55887271 (DE-599)BVBBV019883719 |
dewey-full | 512/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.4 |
dewey-search | 512/.4 |
dewey-sort | 3512 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02756nam a2200601zcb4500</leader><controlfield tag="001">BV019883719</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050727 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050713s2004 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004055294</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521603056</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">0-521-60305-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55887271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019883719</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 162f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structured ring spectra</subfield><subfield code="c">edited by Andrew Baker ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">236 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">315</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Within algebraic topology, the prominent role of multiplicative cohomology theories has led to a great deal of foundational research on ring spectra and in the 1990s this gave rise to significant new approaches to constructing categories of spectra and ring-like objects in them. This book contains some important new contributions to the theory of structured ring spectra as well as survey papers describing these and relationships between them. One important aspect is the study of strict multiplicative structures on spectra and the development of obstruction theories to imposing strictly associative and commutative ring structures on spectra. A different topic is the transfer of classical algebraic methods and ideas, such as Morita theory, to the world of stable homotopy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anneaux (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catégories (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra abstrata (congressos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra homológica (congressos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Idealtheorie</subfield><subfield code="0">(DE-588)4161208-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Modul <Mathematik></subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Idealtheorie</subfield><subfield code="0">(DE-588)4161208-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modul <Mathematik></subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Andrew</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">315</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">315</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013207822</subfield></datafield></record></collection> |
genre | Modul <Mathematik> gnd |
genre_facet | Modul <Mathematik> |
id | DE-604.BV019883719 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T20:08:20Z |
institution | BVB |
isbn | 0521603056 |
language | English |
lccn | 2004055294 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013207822 |
oclc_num | 55887271 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 |
owner_facet | DE-91G DE-BY-TUM DE-824 |
physical | 236 S. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Structured ring spectra edited by Andrew Baker ... Cambridge Cambridge University Press 2004 236 S. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society lecture note series 315 Within algebraic topology, the prominent role of multiplicative cohomology theories has led to a great deal of foundational research on ring spectra and in the 1990s this gave rise to significant new approaches to constructing categories of spectra and ring-like objects in them. This book contains some important new contributions to the theory of structured ring spectra as well as survey papers describing these and relationships between them. One important aspect is the study of strict multiplicative structures on spectra and the development of obstruction theories to imposing strictly associative and commutative ring structures on spectra. A different topic is the transfer of classical algebraic methods and ideas, such as Morita theory, to the world of stable homotopy. Anneaux (Algèbre) Catégories (Mathématiques) Homotopie Spectre (Mathématiques) Álgebra abstrata (congressos) larpcal Álgebra homológica (congressos) larpcal Rings (Algebra) Spectral theory (Mathematics) Categories (Mathematics) Homotopy theory Idealtheorie (DE-588)4161208-5 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Modul <Mathematik> gnd rswk-swf Idealtheorie (DE-588)4161208-5 s Ring Mathematik (DE-588)4128084-2 s Modul <Mathematik> f Spektraltheorie (DE-588)4116561-5 s DE-604 Baker, Andrew Sonstige oth London Mathematical Society lecture note series 315 (DE-604)BV000000130 315 |
spellingShingle | Structured ring spectra London Mathematical Society lecture note series Anneaux (Algèbre) Catégories (Mathématiques) Homotopie Spectre (Mathématiques) Álgebra abstrata (congressos) larpcal Álgebra homológica (congressos) larpcal Rings (Algebra) Spectral theory (Mathematics) Categories (Mathematics) Homotopy theory Idealtheorie (DE-588)4161208-5 gnd Ring Mathematik (DE-588)4128084-2 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4161208-5 (DE-588)4128084-2 (DE-588)4116561-5 |
title | Structured ring spectra |
title_auth | Structured ring spectra |
title_exact_search | Structured ring spectra |
title_full | Structured ring spectra edited by Andrew Baker ... |
title_fullStr | Structured ring spectra edited by Andrew Baker ... |
title_full_unstemmed | Structured ring spectra edited by Andrew Baker ... |
title_short | Structured ring spectra |
title_sort | structured ring spectra |
topic | Anneaux (Algèbre) Catégories (Mathématiques) Homotopie Spectre (Mathématiques) Álgebra abstrata (congressos) larpcal Álgebra homológica (congressos) larpcal Rings (Algebra) Spectral theory (Mathematics) Categories (Mathematics) Homotopy theory Idealtheorie (DE-588)4161208-5 gnd Ring Mathematik (DE-588)4128084-2 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Anneaux (Algèbre) Catégories (Mathématiques) Homotopie Spectre (Mathématiques) Álgebra abstrata (congressos) Álgebra homológica (congressos) Rings (Algebra) Spectral theory (Mathematics) Categories (Mathematics) Homotopy theory Idealtheorie Ring Mathematik Spektraltheorie Modul <Mathematik> |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT bakerandrew structuredringspectra |