Principles of combustion:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 732 S. graph. Darst. |
ISBN: | 0471046892 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV019800020 | ||
003 | DE-604 | ||
005 | 20071012 | ||
007 | t | ||
008 | 050504s2005 d||| |||| 00||| eng d | ||
020 | |a 0471046892 |9 0-471-04689-2 | ||
035 | |a (OCoLC)301080786 | ||
035 | |a (DE-599)BVBBV019800020 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-703 |a DE-634 |a DE-83 | ||
050 | 0 | |a TJ254.5 | |
082 | 0 | |a 621.402/3 |2 22 | |
084 | |a VE 6000 |0 (DE-625)147131:253 |2 rvk | ||
084 | |a ZP 3270 |0 (DE-625)157949: |2 rvk | ||
084 | |a ERG 420f |2 stub | ||
100 | 1 | |a Kuo, Kenneth K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of combustion |c Kenneth K. Kuo |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2005 | |
300 | |a XXVII, 732 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Technique de la combustion |2 ram | |
650 | 4 | |a Combustion engineering | |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
655 | 4 | |a Matériel didactique | |
689 | 0 | 0 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013125603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-013125603 |
Datensatz im Suchindex
_version_ | 1804133293121077248 |
---|---|
adam_text | PRINCIPLES OF COMBUSTION SECOND EDITION KENNETH K. KUO WILEY JOHN WILEY
& SONS, INC. CONTENTS PREFACE XXI PREFACE TO THE FIRST EDITION XXV
INTRODUCTION 1 IMPORTANCE OF COMBUSTION IN VARIOUS APPLICATIONS / 1
RELATED CONSTITUENT DISCIPLINES FOR COMBUSTION STUDIES / 3 GENERAL
METHOD OF APPROACH TO COMBUSTION PROBLEMS / 4 GENERAL OBJECTIVES OF
COMBUSTION MODELING / 4 CLASSIFICATION OF COMBUSTION PROBLEMS / 4
GENERAL STRUCTURE OF A THEORETICAL MODEL / 6 GOVERNING EQUATIONS FOR
COMBUSTION MODELING (CONSERVATION AND TRANSPORT EQUATIONS) / 6 SOME
COMMON ASSUMPTIONS MADE IN COMBUSTION MODELS (ESPECIALLY FOR CLASSICAL
MODELS) / 6 SEVERAL BASIC DEFINITIONS / 8 1 REVIEW OF CHEMICAL
THERMODYNAMICS 11 NOMENCLATURE / 11 1 BRIEF STATEMENT OF THERMODYNAMIC
LAWS / 15 2 EQUATION OF STATE / 17 3 CONSERVATION OF MASS / 18 4 THE
FIRST LAW OF THERMODYNAMICS; CONSERVATION OF ENERGY / 20 5 THE SECOND
LAW OF THERMODYNAMICS / 24 5.1 EQUILIBRIUM THERMODYNAMICS / 24 5.2
NONEQUILIBRIUM THERMODYNAMICS / 26 6 CRITERIA FOR EQUILIBRIUM / 34 7
CONSERVATION OF ATOMIC SPECIES / 36 VII VIII CONTENTS 8 VARIOUS METHODS
FOR REACTANT-FRACTION SPECIFICATION / 38 8.1 MOLE FRACTION X AND MASS
FRACTION Y I 38 8.2 FUEL-OXIDANT RATIO F/O AND FUEL-AIR RATIO F/A I 39
8.3 EQUIVALENCE RATIO 4 I 39 8.4 MIXTURE FRACTION / / 40 9 STANDARD
ENTHALPIES OF FORMATION / 43 10 THERMOCHEMICAL LAWS / 47 11 RELATIONSHIP
BETWEEN BOND ENERGIES AND HEATS OF FORMATION 7 48 12 HEATS OF REACTION
FOR CONSTANT-PRESSURE AND CONSTANT-VOLUME COMBUSTION / 52 12.1
CONSTANT-PRESSURE COMBUSTION / 53 12.2 CONSTANT-VOLUME COMBUSTION / 66
13 ENERGY BALANCE CONSIDERATIONS FOR FLAME TEMPERATURE CALCULATIONS / 68
14 EQUILIBRIUM CONSTANTS / 73 15 REAL-GAS EQUATIONS OF STATE AND
FUGACITY CALCULATION / 90 16 MORE-COMPLICATED DISSOCIATION IN THE
COMBUSTION OF HYDROCARBONS / 93 17 THE CLAUSIUS-CLAPEYRON EQUATION FOR
PHASE EQUILIBRIUM / 96 18 CALCULATION OF EQUILIBRIUM COMPOSITIONS WITH
NASA S CEA COMPUTER PROGRAM / 98 18.1 ASSUMPTIONS AND CAPABILITIES / 101
18.2 EQUATIONS DESCRIBING CHEMICAL EQUILIBRIUM / 103 18.2.1
THERMODYNAMIC EQUATIONS / 103 18.2.2 MINIMIZATION OF GIBBS FREE ENERGY /
104 19 OTHER WELL-ESTABLISHED CHEMICAL EQUILIBRIUM CODES / 107
REFERENCES / 109 HOMEWORK / 110 PROJECTS / 114 2 CHEMICAL KINETICS AND
REACTION MECHANISMS 116 NOMENCLATURE / 116 1 RATES OF REACTION AND THEIR
FUNCTIONAL DEPENDENCE / 118 1.1 TOTAL COLLISION FREQUENCY / 119 1.2
EQUATION OF ARRHENIUS / 122 1.3 APPARENT ACTIVATION ENERGY / 125 1.4
RATES OF REACTION / 126 1.5 METHODS FOR MEASUREMENT OF GAS-PHASE
REACTION RATES / 131 1.5.1 STATIC METHODS / 132 1.5.1.1 FLASH PHOTOLYSIS
RESONANCE FLUORESCENCE TECHNIQUE / 133 1.5.1.2 RELATIVE RATE-CONSTANT
PHOTOLYSIS TECHNIQUE / 134 CONTENTS IX 1.5.1.3 LASER PHOTOLYSIS/LASER
INDUCED FLUORESCENCE TECHNIQUE / 135 1.5.2 DYNAMIC METHODS FOR REACTIONS
IN FLOW SYSTEMS / 136 1.5.3 SEVERAL METHODS FOR MEASURING RAPID REACTION
RATES / 137 2 ONE-STEP CHEMICAL REACTIONS OF VARIOUS ORDERS / 141 2.1
FIRST-ORDER REACTIONS / 141 2.2 SECOND-ORDER REACTIONS / 144 2.3
THIRD-ORDER REACTIONS / 147 3 CONSECUTIVE REACTIONS / 148 4 COMPETITIVE
REACTIONS / 150 5 OPPOSING REACTIONS / 150 5.1 FIRST-ORDER REACTION
OPPOSED BY A FIRST-ORDER REACTION / 151 5.2 FIRST-ORDER REACTION OPPOSED
BY A SECOND-ORDER REACTION / 153 5.3 SECOND-ORDER REACTION OPPOSED BY A
SECOND-ORDER REACTION / 153 6 CHAIN REACTIONS / 154 6.1 FREE RADICALS /
154 6.2 LINDEMANN S THEORY FOR FIRST-ORDER REACTION / 156 6.3 COMPLEX
REACTIONS / 159 6.3.1 HYDROGEN-BROMINE REACTION / 159 7 CHAIN-BRANCHING
EXPLOSIONS / 162 8 CHEMKIN ANALYSIS AND CODE APPLICATION FOR GAS-PHASE
KINETICS / 164 8.1 THERMODYNAMIC PROPERTIES / 165 8.2 REACTION RATE
EXPRESSIONS / 166 8.3 BRIEF DESCRIPTION OF PROCEDURES IN USING CHEMKIN
CODE / 169 9 SURFACE REACTIONS / 173 9.1 SURFACE ADSORPTION PROCESSES /
174 9.1.1 THE LANGMUIR ADSORPTION ISOTHERM I 116 9.1.2 ADSORPTION WITH
DISSOCIATION / 177 9.1.3 COMPETITIVE ADSORPTION / 178 9.2 SURFACE
REACTION PROCESSES / 178 9.2.1 REACTION MECHANISM / 178 9.2.2
UNIMOLECULAR SURFACE REACTIONS / 180 9.2.3 BIMOLECULAR SURFACE REACTIONS
/ 181 9.2.4 DESORPTION / 182 9.3 KINETIC MODEL OF HYDROGEN-OXYGEN
REACTION ON PLATINUM SURFACE / 183 9.3.1 SIMPLE KINETIC MODEL OF H 2 /O
2 REACTION ON PLATINUM SURFACE / 184 CONTENTS 9.3.2 KINETIC RATES OF
H2/O2 REACTION ON PLATINUM SURFACE / 186 9.4 EXPERIMENTAL METHODS TO
STUDY SURFACE REACTIONS / 187 9.4.1 SPECTROSCOPIC METHODS / 187 9.4.1.1
AUGER ELECTRON SPECTROSCOPY / 187 9.4.2 TEMPERATURE-CONTROLLED METHODS /
189 9.4.3 COMBINATION OF SPECTROSCOPIC AND TEMPERATURE-CONTROLLED
METHODS / 190 9.5 SURFACE REACTION RATE DETERMINATION / 190 9.5.1 AN
EXAMPLE OF APPLICATION OF LIF TECHNIQUE IN SURFACE REACTION RATE
DETERMINATION / 191 9.5.1.1 THE ELEMENTARY STEPS / 192 9.5.1.2
EXPERIMENTAL SETUP / 193 9.5.1.3 EXPERIMENTAL RESULTS / 193 10 RATE LAWS
FOR ISOTHERMAL REACTIONS UTILIZING DIMENSIONLESS PARAMETERS / 195 10.1
EQUILIBRIUM CONSTANTS / 197 10.2 NET RATE OF PRODUCTION OF CHEMICAL
SPECIES / 199 11 PROCEDURE AND APPLICATIONS OF SENSITIVITY ANALYSIS /
199 11.1 INTRODUCTION TO SENSITIVITY ANALYSIS / 200 11.2 THE PROCEDURE
FOR LOCAL SENSITIVITY ANALYSIS / 205 11.2.1 TIME-DEPENDENT
ZERO-DIMENSIONAL PROBLEMS / 205 11.2.2 THE PROCEDURE FOR STEADY-STATE
ONE-DIMENSIONAL PROBLEMS / 208 11.2.3 THE PROCEDURE FOR TIME-DEPENDENT
SPATIAL PROBLEMS / 209 11.3 THE EXAMPLE OF SENSITIVITY ANALYSIS OF
ALIPHATIC HYDROCARBON COMBUSTION / 210 11.3.1 LOCAL SENSITIVITY ANALYSIS
IN ONE-DIMENSIONAL FLAME FRONTS / 210 11.3.2 SENSITIVITY ANALYSIS FOR
ZERO-DIMENSIONAL PROBLEMS / 210 12 REACTION FLOW ANALYSIS / 211 13
REACTION MECHANISMS OF H2/O2 SYSTEMS / 215 13.1 BACKGROUND INFORMATION
ABOUT H2/O2 REACTION SYSTEMS / 216 13.2 EXPLOSION LIMITS OF H 2 /O 2
SYSTEMS / 220 14 GAS-PHASE REACTION MECHANISMS OF ALIPHATIC HYDROCARBON
AND OXYGEN SYSTEM / 223 14.1 SPECIFIC MECHANISMS / 224 14.1.1 GAS-PHASE
KINETICS OF H 2 OXIDATION / 225 14.1.2 O 3 DECOMPOSITION MECHANISM / 232
14.1.3 CO OXIDATION MECHANISM / 233 14.1.4 CH 2 O REACTION / 233
CONTENTS XI 14.1.5 CH 4 OXIDATION / 234 14.1.6 C 2 H 6 (ETHANE)
OXIDATION / 236 14.1.7 C 2 H 4 (ETHYLENE) OXIDATION / 237 14.1.8 C 2 H 2
(ACETYLENE) OXIDATION / 238 14.1.9 CH 2 CO (KETENE) OXIDATION / 240
14.1.10 CH 3 OH (METHANOL) REACTIONS / 241 14.1.11 C2H5OH (ETHANOL)
REACTIONS / 242 14.1.12 CH3CHO (ACETALDEHYDE) REACTION / 243 14.2
DISCUSSION OF MORE COMPLEX CASES / 244 15 REDUCTION OF HIGHLY COMPLEX
REACTION SYSTEM TO SIMPLER REACTION MECHANISMS / 245 15.1
QUASI-STEADY-STATE ASSUMPTION (QSSA) AND PARTIAL EQUILIBRIUM ASSUMPTION
/ 246 15.2 COMPUTATIONAL SINGULAR PERTURBATION METHODS FOR STIFF
EQUATIONS / 247 15.2.1 STIFF EQUATIONS / 248 15.2.2 CHEMICAL KINETIC
SYSTEMS AS STIFF EQUATIONS / 248 15.2.3 FORMULATION OF THE PROBLEM / 249
15.2.3.1 THE FAST SUBSPACE / 249 15.2.3.2 THE EQUATIONS FOR F I 250
15.2.3.3 DETERMINATION OF M, THE CHOICE OF A/ AND B 7 / 251 15.2.4
PROCEDURES FOR SOLVING THE CHAIN REACTION PROBLEMS / 252 15.3 SOME
OBSERVATIONS OF THE CSP METHOD / 252 16 FORMATION MECHANISM OF NITROGEN
OXIDES / 255 16.1 THERMAL NO MECHANISM (ZEL DOVICH MECHANISM) / 255 16.2
PROMPT NO MECHANISM (FENIMORE MECHANISM) / 258 16.3 NO PRODUCTION FROM
FUEL-BOUND NITROGEN / 262 16.3.1 THE OXIDATION OF HCN / 262 16.3.2 THE
NO -+ HCN - N 2 MECHANISM / 264 16.3.3 THE OXIDATION OF NH 3 / 265 16.4
NO 2 MECHANISM / 267 16.5 N 2 O MECHANISM / 267 16.6 OVERALL REMARKS ON
NO* FORMATION / 269 17 FORMATION AND CONTROL OF CO AND PARTICULATES /
270 17.1 CARBON MONOXIDE / 270 17.2 PANICULATE MATTER / 271 17.2.1 MAJOR
TYPES OF PARTICULATES / 272 17.2.2 HARMFUL EFFECTS / 272 17.2.3
PARTICULATE MATTER CONTROL METHODS / 272 REFERENCES / 274 HOMEWORK / 281
XII CONTENTS 3 THE CONSERVATION EQUATIONS FOR MULTICOMPONENT REACTING
SYSTEMS 285 NOMENCLATURE / 285 1 DEFINITIONS OF CONCENTRATIONS,
VELOCITIES, AND MASS FLUXES / 287 2 FICK S LAW OF DIFFUSION / 289 3
THEORY OF ORDINARY DIFFUSION IN GASES AT LOW DENSITY / 290 4 CONTINUITY
EQUATION AND SPECIES MASS CONSERVATION EQUATIONS / 293 5 CONSERVATION OF
MOMENTUM / 297 5.1 MOMENTUM EQUATION IN TERMS OF STRESS / 297 5.1.1
MOMENTUM EQUATION DERIVATION BY INFINITESIMAL PARTICLE APPROACH / 298
5.1.2 MOMENTUM EQUATION DERIVATION BY INFINITESIMAL CONTROL VOLUME
APPROACH / 302 5.1.3 FINITE CONTROL VOLUME / 303 5.2 STRESS-STRAIN RATE
RELATIONSHIP (CONSTITUTIVE RELATIONSHIP) / 304 5.2.1 STRAIN RATE / 305
5.2.2 STRESS TENSOR / 307 5.3 NAVIER-STOKES EQUATIONS / 310 6
CONSERVATION OF ENERGY / 320 7 PHYSICAL DERIVATION OF THE MULTICOMPONENT
DIFFUSION EQUATION / 328 8 OTHER NECESSARY EQUATIONS IN MULTICOMPONENT
SYSTEMS / 331 9 SOLUTION OF A MULTICOMPONENT-SPECIES SYSTEM / 331 10
SHVAB-ZEL DOVICH FORMULATION / 332 11 DIMENSIONLESS RATIOS OF TRANSPORT
COEFFICIENTS / 336 12 BOUNDARY CONDITIONS AT AN INTERFACE / 337
REFERENCES / 350 HOMEWORK / 350 PROJECTS / 353 4 DETONATION AND
DEFLAGRATION WAVES OF PREMIXED GASES 354 NOMENCLATURE / 354 1
QUALITATIVE DIFFERENCES BETWEEN DETONATION AND DEFLAGRATION / 356 2 THE
HUGONIOT CURVE / 357 3 PROPERTIES OF THE HUGONIOT CURVE / 361 3.1
ENTROPY DISTRIBUTION ALONG THE HUGONIOT CURVE / 365 CONTENTS XIII 3.2
COMPARISON OF THE BURNED-GAS VELOCITY BEHIND A DETONATION WAVE WITH THE
LOCAL SPEED OF SOUND / 367 4 DETERMINATION OF CHAPMAN-JOUGUET DETONATION
WAVE VELOCITY / 373 4.1 TRIAL-AND-ERROR METHOD / 373 4.2 THE
NEWTON-RAPHSON ITERATION METHOD / 375 4.3 COMPARISON OF CALCULATED
DETONATION-WAVE VELOCITIES WITH EXPERIMENTAL DATA / 379 5
DETONATION-WAVE STRUCTURE / 381 5.1 ZEL DOVICH-VON NEUMANN-DORING (ZND)
ONE-DIMENSIONAL WAVE STRUCTURE / 381 5.2 MULTIDIMENSIONAL
DETONATION-WAVE STRUCTURE / 384 5.3 NUMERICAL SIMULATION OF DETONATIONS
/ 386 6 THE MECHANISM OF DEFLAGRATION-TO-DETONATION TRANSITION (DDT) IN
GASEOUS MIXTURES / 388 7 DETONABILITY AND CHEMICAL KINETICS: LIMITS OF
DETONABILITY / 395 7.1 CLASSICAL MODEL OF BELLES / 395 7.2 DETONABILITY
LIMITS OF CONFINED FUEL MIXTURES / 401 7.2.1 INITIAL CONDITION
DEPENDENCE / 402 7.2.2 BOUNDARY CONDITION DEPENDENCE / 402 7.2.3
SINGLE-HEAD SPIN DETONATION / 403 7.3 DETONABILITY CRITERIA AND
DETONATION CELL SIZE / 405 7.4 CHEMICAL KINETICS OF DETONATION IN H 2
-AIR-DILUENT MIXTURES / 410 8 NONIDEAL DETONATIONS / 413 8.1 DEFINITION
OF NONIDEAL DETONATION AND ZEL DOVICH AND SHCHELKIN S DETONATION
MECHANISMS IN ROUGH TUBES / 414 8.2 THEORETICAL CONSIDERATIONS OF ENERGY
AND MOMENTUM LOSSES / 415 8.3 CRITICAL PIPE DIAMETER CONSIDERATION / 416
8.4 EFFECT OF SEVERAL PHYSICAL AND CHEMICAL PARAMETERS ON DETONABILITY /
419 8.5 POSSIBLE MEASURES FOR REDUCING POTENTIAL OF DETONATION WAVE
GENERATION / 420 9 CONSIDERATION OF SPONTANEOUS DETONATION INITIATION /
422 9.1 FUNCTIONAL FORM OF DISTRIBUTION OF IGNITION DELAY / 424 9.2
EXPERIMENTAL VERIFICATION OF PROCESSES OF NONEXPLOSIVE DETONATION
INITIATION / 425 9.2.1 PHOTOCHEMICAL INITIATION OF DETONATION IN
MIXTURES WITH NONUNIFORM CONCENTRATION / 425 9.2.2 GASDYNAMIC JET AS A
METHOD OF CREATING TEMPERATURE-CONCENTRATION NONUNIFORMITY / 426 9.3
GENERAL OBSERVATION AND STATUS OF UNDERSTANDING / 428 XJV CONTENTS
REFERENCES / 428 HOMEWORK / 434 PROJECT / 435 5 PREMIXED LAMINAR FLAMES
437 NOMENCLATURE / 437 1 INTRODUCTION AND FLAME SPEED MEASUREMENT
METHODS / 438 1.1 BUNSEN BURNER METHOD / 438 1.2 CONSTANT-VOLUME
SPHERICAL BOMB METHOD / 442 1.3 SOAP-BUBBLE (CONSTANT-PRESSURE BOMB)
METHOD / 443 1.4 PARTICLE-TRACK METHOD / 445 1.5 FLAT-FLAME BURNER
METHOD / 445 1.6 DIAGNOSTIC METHOD FOR FLAME STRUCTURE MEASUREMENTS /
447 1.6.1 VELOCITY MEASUREMENTS / 448 1.6.2 DENSITY MEASUREMENTS / 448
1.6.3 CONCENTRATION MEASUREMENTS / 448 1.6.4 TEMPERATURE MEASUREMENTS /
448 2 CLASSICAL LAMINAR-FLAME THEORIES / 449 2.1 THERMAL THEORY: MALLARD
AND LECHATELIER S DEVELOPMENT (1883) / 449 2.2 COMPREHENSIVE THEORY: THE
THEORY OF ZEL DOVICH, FRANK-KAMENETSKY, AND SEMENOV / 451 2.3 DIFFUSION
THEORY: THE THEORY OF TANFORD AND PEASE / 458 3 CONTEMPORARY METHOD FOR
SOLVING LAMINAR-FLAME PROBLEMS / 461 3.1 PREMIXED O3/O 2 LAMINAR FLAMES
/ 461 3.2 CHEMKIN CODE FOR SOLVING PREMIXED LAMINAR-FLAME STRUCTURES /
468 4 DYNAMIC ANALYSIS OF STRETCHED LAMINAR PREMIX FLAMES / 471 4.1
DEFINITION OF FLAME STRETCH FACTOR AND KARLOVITZ NUMBER / 471 4.2
BALANCE EQUATION FOR PREMIXED LAMINAR-FLAME AREA / 476 4.3 THE USE OF
EXPANDING SPHERICAL FLAMES TO DETERMINE BURNING VELOCITIES AND STRETCH
EFFECTS IN HYDROGEN/AIR MIXTURES / 477 4.4 LAMINAR BURNING VELOCITIES
AND MARKSTEIN NUMBERS OF HYDROCARBON/AIR FLAMES / 484 4.5 BURNING RATES
OF ULTRA-LEAN TO MODERATELY RICH H 2 /O 2 /N 2 LAMINAR FLAMES WITH
PRESSURE VARIATIONS / 490 5 EFFECT OF CHEMICAL AND PHYSICAL VARIABLES ON
FLAME SPEED / 496 5.1 CHEMICAL VARIABLES / 496 5.1.1 EFFECT OF MIXTURE
RATIO / 496 5.1.2 EFFECT OF FUEL MOLECULAR STRUCTURE / 497 5.1.3 EFFECTS
OF ADDITIVES / 499 5.2 PHYSICAL VARIABLES / 500 5.2.1 EFFECT OF PRESSURE
/ 500 CONTENTS XV 5.2.2 EFFECT OF INITIAL TEMPERATURE / 501 5.2.3 EFFECT
OF FLAME TEMPERATURE / 502 5.2.4 EFFECT OF THERMAL DIFFUSIVITY AND
SPECIFIC HEAT / 502 6 PRINCIPLE OF STABILIZATION OF COMBUSTION WAVES IN
LAMINAR STREAMS / 503 7 FLAME QUENCHING / 507 8 FLAMMABILITY LIMITS OF
PREMIXED LAMINAR FLAMES / 510 8.1 FLAMMABILITY LIMITS DETERMINED FROM A
STANDARD GLASS TUBE / 510 8.2 EFFECT OF PRESSURE AND TEMPERATURE ON
FLAMMABILITY LIMITS / 512 8.3 SPALDING S THEORY OF FLAMMABILITY LIMITS
AND FLAME QUENCHING / 513 8.4 FLAME STRUCTURE NEAR THE FLAMMABILITY
LIMITS OF PREMIXED HYDROGEN-OXYGEN FLAMES / 523 REFERENCES / 528
HOMEWORK / 533 PROJECT / 535 GASEOUS DIFFUSION FLAMES AND COMBUSTION OF
A SINGLE LIQUID FUEL DROPLET 537 NOMENCLATURE / 537 1 BURKE AND
SCHUMANN S THEORY OF LAMINAR DIFFUSION FLAMES / 539 1.1 BASIC
ASSUMPTIONS AND SOLUTION METHOD / 544 1.2 FLAME SHAPE AND FLAME HEIGHT /
546 2 PHENOMENOLOGICAL ANALYSIS OF FUEL JETS / 548 3 LAMINAR DIFFUSION
FLAME JETS / 551 3.1 LAMINAR JET MIXING / 551 3.2 LAMINAR JET WITH
CHEMICAL REACTIONS / 557 3.3 NUMERICAL SOLUTION OF TWO-DIMENSIONAL
AXISYMMETRIC LAMINAR DIFFUSION FLAMES / 561 3.4 EFFECT OF PREFERENTIAL
DIFFUSION OF SPECIES AND HEAT IN LAMINAR DIFFUSION FLAMES / 566 4
EVAPORATION AND BURNING OF A SINGLE DROPLET IN A QUIESCENT ATMOSPHERE /
569 4.1 EVAPORATION OF A SINGLE FUEL DROPLET / 572 4.2 MASS BURNING RATE
OF A SINGLE FUEL DROPLET / 578 5 FUEL DROPLET IN A CONVECTIVE STREAM /
581 5.1 CORRELATION DEVELOPMENT FOR NEARLY SPHERICAL DROPLETS IN
CONVECTIVE STREAMS / 581 5.2 SIMULATION OF DEFORMED DROPLET DYNAMICS /
583 5.3 EFFECT OF INTERNAL CIRCULATION ON DROPLET VAPORIZATION RATE /
585 XVI CONTENTS 6 SUPERCRITICAL BURNING OF LIQUID DROPLETS IN A
STAGNANT ENVIRONMENT / 590 6.1 THERMODYNAMIC AND TRANSPORT PROPERTIES /
593 6.1.1 EXTENDED CORRESPONDING-STATE PRINCIPLE / 594 6.1.2 EQUATION OF
STATE / 595 6.1.3 THERMODYNAMIC PROPERTIES / 596 6.1.4 TRANSPORT
PROPERTIES / 597 6.2 VAPOR-LIQUID PHASE EQUILIBRIUM / 598 6.3 DROPLET
VAPORIZATION IN QUIESCENT ENVIRONMENTS / 603 6.4 DROPLET COMBUSTION IN
QUIESCENT ENVIRONMENTS / 606 6.5 DROPLET VAPORIZATION IN SUPERCRITICAL
CONVECTIVE ENVIRONMENTS / 610 6.6 DROPLET RESPONSE TO AMBIENT FLOW
OSCILLATION / 613 REFERENCES / 614 HOMEWORK / 618 PROJECTS / 620
APPENDIX A EVALUATION OF THERMAL AND TRANSPORT PROPERTIES OF GASES AND
LIQUIDS 623 NOMENCLATURE / 623 INTRODUCTION / 625 1 GAS DENSITY / 625
1.1 BASELINE METHOD / 627 IDEAL-GAS EQUATION OF STATE / 627 1.2
HIGH-PRESSURE CORRECTION / 628 VAN DER WAALS EQUATION OF STATE / 628
REDLICH-KWONG EQUATION OF STATE / 628 SOAVE (SRK) AND PENG-ROBINSON
EQUATIONS OF STATE / 628 VIRIAL EQUATION OF STATE / 629
BEATTIE-BRIDGEMAN EQUATION OF STATE / 630 BENEDICT-WEBB-RUBIN (BWR)
EQUATION OF STATE / 630 1.3 MIXING RULES / 631 IDEAL-GAS MIXING RULES /
631 MIXING RULES FOR REDLICH-KWONG TYPE OF EQUATION OF STATE / 631
BENEDICT-WEBB-RUBIN MIXING RULES / 632 VIRIAL EQUATION MIXING PARAMETERS
/ 632 2 LIQUID DENSITY / 633 2.1 BASELINE METHOD / 633 SPENCER-DANNER
CORRELATION AND OTHER MODIFICATIONS / 633 COSTALD (HANKINSON-THOMSON
CORRELATION) / 634 CONTENTS XVII 2.2 HIGH-PRESSURE CORRECTION / 635
HANKINSON-BROBST-THOMSON (HBT) MODEL / 635 GENERALIZED COSTALD / 636
CHANG-ZHAO EQUATION / 636 MODEL OF AALTO ET AL. / 637 2.3 MIXING RULES /
638 MIXING RULES FOR CRITICAL TEMPERATURE OF LIQUID MIXTURES / 638
MIXING RULES FOR CRITICAL VOLUME V C , M AND CHARACTERISTIC VOLUME V M *
I 639 MIXING RULE FOR ACENTRIC FACTOR / 639 ESTIMATION OF THE CRITICAL
PRESSURE FOR A MIXTURE / 640 3 GAS SPECIFIC HEAT / 641 3.1 BASELINE
METHOD / 641 EVALUATION OF IDEAL-GAS HEAT CAPACITY AT CONSTANT PRESSURE,
J/(MOL * K) / 642 JOBACK METHOD 1 / 642 METHOD OF THINH ET AL. 26 / 644
3.2 HIGH-PRESSURE CORRECTION / 645 3.3 MIXING RULES / 650 4 LIQUID
SPECIFIC HEAT / 651 4.1 BASELINE METHOD / 651 GROUP CONTRIBUTION METHOD
/ 651 CORRESPONDING STATES METHOD / 654 4.2 HIGH-PRESSURE CORRECTION /
654 4.3 MIXING RULE FOR LIQUID MIXTURES / 654 5 GAS VISCOSITY / 654 5.1
BASELINE METHOD / 655 CHAPMAN-ENSKOG APPROACH / 655 METHOD OF
CORRESPONDING STATES / 657 5.2 HIGH-PRESSURE CORRECTION / 658
REICHENBERG METHOD / 658 LUCAS METHOD / 659 5.3 MIXING RULES / 660 6
LIQUID VISCOSITY / 661 6.1 BASELINE METHOD / 661 CORRELATING EQUATIONS /
662 LOW-TEMPERATURE VISCOSITY ESTIMATION METHODS / 664 VAN VELZEN,
CARDOZO, AND LANGENKAMP S GROUP CONTRIBUTION METHOD 62 / 665 ORRICK AND
ERBAR S GROUP CONTRIBUTION METHOD 1 / 665 XVIII CONTENTS PRZEZDZIECKI
AND SRIDHAR S CORRESPONDING STATES METHOD 63 / 666 HIGH-TEMPERATURE
LIQUID VISCOSITY ESTIMATION METHODS / 667 LETSOU AND STIEL S METHOD FOR
SATURATED LIQUIDS 67 / 667 BRULE AND STARLING S 68 AND CHUNG ET AL. S 69
METHOD / 667 6.2 HIGH-PRESSURE CORRECTION / 668 LUCAS S ESTIMATION
METHOD 48 / 668 6.3 MIXING RULES / 669 GRUNBERG AND NISSAN S METHOD 71 /
669 TEJA AND RICE S METHOD 74 / 670 7 GAS THERMAL CONDUCTIVITY / 671 7.1
BASELINE METHOD / 671 7.2 HIGH-PRESSURE CORRECTION / 672 7.3 MIXING
RULES / 673 GAS MIXTURE AT LOW TO MODERATE PRESSURES / 673 GAS MIXTURE
AT HIGH PRESSURES / 673 8 LIQUID THERMAL CONDUCTIVITY / 674 8.1 BASELINE
METHOD / 674 MILLER ET AL. S EMPIRICAL CORRELATION 86 / 674 BARONCINI ET
AL. S METHOD / 675 8.2 HIGH-PRESSURE CORRECTION / 677 8.3 MIXING RULES /
677 9 GAS DIFFUSIVITY / 678 9.1 BASELINE METHOD / 678 CHAPMAN AND
ENSKOG S METHOD 43 / 678 WILKE AND LEE S METHOD 91 / 680 9.2
HIGH-PRESSURE CORRECTION / 680 9.3 MIXING RULES / 683 10 LIQUID
DIFFUSIVITY / 684 10.1 BASELINE METHOD / 684 WILKE-CHANG CORRELATION 94
/ 684 TYN AND CALUS S METHOD 95 / 685 HAYDUK AND MINHAS S METHOD 96 /
686 TYN S METHOD FOR HIGHER TEMPERATURES 97 / 686 10.2 HIGH-PRESSURE
CORRECTION / 687 10.3 MIXING RULES / 687 PERKINS AND GEANKOPLIS S METHOD
99 / 687 REFERENCES / 688 CONTENTS XIX APPENDIX B CONSTANTS AND
CONVERSION FACTORS OFTEN USED IN COMBUSTION 693 APPENDIX C NAMING OF
HYDROCARBONS AND PROPERTIES OF HYDROCARBON FUELS 697 APPENDIX D MELTING,
BOILING, AND CRITICAL TEMPERATURES OF ELEMENTS 705 APPENDIX E PERIODIC
TABLE AND ELECTRONIC CONFIGURATIONS OF NEUTRAL ATOMS IN GROUND STATES
707 REFERENCE / 711 AUTHOR INDEX 713 SUBJECT INDEX 718
|
any_adam_object | 1 |
author | Kuo, Kenneth K. |
author_facet | Kuo, Kenneth K. |
author_role | aut |
author_sort | Kuo, Kenneth K. |
author_variant | k k k kk kkk |
building | Verbundindex |
bvnumber | BV019800020 |
callnumber-first | T - Technology |
callnumber-label | TJ254 |
callnumber-raw | TJ254.5 |
callnumber-search | TJ254.5 |
callnumber-sort | TJ 3254.5 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | VE 6000 ZP 3270 |
classification_tum | ERG 420f |
ctrlnum | (OCoLC)301080786 (DE-599)BVBBV019800020 |
dewey-full | 621.402/3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/3 |
dewey-search | 621.402/3 |
dewey-sort | 3621.402 13 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft Energietechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01436nam a2200409 c 4500</leader><controlfield tag="001">BV019800020</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071012 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050504s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471046892</subfield><subfield code="9">0-471-04689-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)301080786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019800020</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ254.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6000</subfield><subfield code="0">(DE-625)147131:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3270</subfield><subfield code="0">(DE-625)157949:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuo, Kenneth K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of combustion</subfield><subfield code="c">Kenneth K. Kuo</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 732 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Technique de la combustion</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Matériel didactique</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013125603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013125603</subfield></datafield></record></collection> |
genre | Matériel didactique |
genre_facet | Matériel didactique |
id | DE-604.BV019800020 |
illustrated | Illustrated |
indexdate | 2024-07-09T20:06:24Z |
institution | BVB |
isbn | 0471046892 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-013125603 |
oclc_num | 301080786 |
open_access_boolean | |
owner | DE-1050 DE-703 DE-634 DE-83 |
owner_facet | DE-1050 DE-703 DE-634 DE-83 |
physical | XXVII, 732 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Wiley |
record_format | marc |
spelling | Kuo, Kenneth K. Verfasser aut Principles of combustion Kenneth K. Kuo 2. ed. Hoboken, NJ Wiley 2005 XXVII, 732 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technique de la combustion ram Combustion engineering Verbrennung (DE-588)4062656-8 gnd rswk-swf Matériel didactique Verbrennung (DE-588)4062656-8 s DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013125603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kuo, Kenneth K. Principles of combustion Technique de la combustion ram Combustion engineering Verbrennung (DE-588)4062656-8 gnd |
subject_GND | (DE-588)4062656-8 |
title | Principles of combustion |
title_auth | Principles of combustion |
title_exact_search | Principles of combustion |
title_full | Principles of combustion Kenneth K. Kuo |
title_fullStr | Principles of combustion Kenneth K. Kuo |
title_full_unstemmed | Principles of combustion Kenneth K. Kuo |
title_short | Principles of combustion |
title_sort | principles of combustion |
topic | Technique de la combustion ram Combustion engineering Verbrennung (DE-588)4062656-8 gnd |
topic_facet | Technique de la combustion Combustion engineering Verbrennung Matériel didactique |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013125603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kuokennethk principlesofcombustion |