Fast Runge-Kutta approximation of inhomogeneous parabolic equations:

Abstract: "The result after N steps of an implicit Runge-Kutta time discretization of an inhomogeneous linear parabolic differential equation is computed, up to accuracy [epsilon], by solving only O(log N log 1/[epsilon]) linear systems of equations. We derive, analyse, and numerically illustra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik 2005
Schriftenreihe:ZIB-Report / Konrad-Zuse-Zentrum für Informationstechnik Berlin 2005,10
Schlagworte:
Zusammenfassung:Abstract: "The result after N steps of an implicit Runge-Kutta time discretization of an inhomogeneous linear parabolic differential equation is computed, up to accuracy [epsilon], by solving only O(log N log 1/[epsilon]) linear systems of equations. We derive, analyse, and numerically illustrate this fast algorithm."
Beschreibung:13 S.