A guide to Monte Carlo simulations in statistical physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2002
|
Ausgabe: | [Nachdr.] |
Schlagworte: | |
Online-Zugang: | Sample text Publisher description Table of contents Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIII, 384 S. graph. Darst. |
ISBN: | 0521653142 0521653665 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV019317890 | ||
003 | DE-604 | ||
005 | 20121002 | ||
007 | t | ||
008 | 040609s2002 xxkd||| |||| 00||| eng d | ||
020 | |a 0521653142 |9 0-521-65314-2 | ||
020 | |a 0521653665 |9 0-521-65366-5 | ||
035 | |a (OCoLC)174678263 | ||
035 | |a (DE-599)BVBBV019317890 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-29T | ||
100 | 1 | |a Landau, David P. |d 1941- |e Verfasser |0 (DE-588)131584960 |4 aut | |
245 | 1 | 0 | |a A guide to Monte Carlo simulations in statistical physics |c David P. Landau ; Kurt Binder |
246 | 1 | 3 | |a Monte Carlo simulations in statistical physics |
250 | |a [Nachdr.] | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2002 | |
300 | |a XIII, 384 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a Monte-Carlo-Simulation |2 swd | |
650 | 7 | |a Statistische Physik |2 swd | |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | 1 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Binder, Kurt |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/samples/cam034/99038308.html |3 Sample text | |
856 | 4 | |u http://www.loc.gov/catdir/description/cam0210/99038308.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/toc/cam021/99038308.html |3 Table of contents | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012785349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-012785349 |
Datensatz im Suchindex
_version_ | 1804132733874601984 |
---|---|
adam_text | AGUIDE TO MONTE CARLO SIMULATIONS IN STATISTICAL PHYSICS DAVID P. LANDAU
CENTER FOR SIMULATIONAL PHYSICS, THE UNIVERSITY OF GEORGIA KURT BINDER
INSTITUT FUER PHYSIK, JOHANNES-GUTENBERG-UNIVERSITAET MAINZ CAMBRIDGE
UNIVERSITY PRESS CONTENTS PREFACE XI 1 INTRODUCTION 1 1.1 WHAT IS A
MONTE CARLO SIMULATION? 1 1.2 WHAT PROBLEMS CAN WE SOLVE WITH IT? 2 1.3
WHAT DIFFICULTIES WILL WE ENCOUNTER? 3 1.3.1 LIMITED COMPUTER TIME AND
MEMORY 3 1.3.2 STATISTICAL AND OTHER ERRORS 3 1.4 WHAT STRATEGY SHOULD
WE FOLLOW IN APPROACHING A PROBLEM? 4 1.5 HOW DO SIMULATIONS RELATE TO
THEORY AND EXPERIMENT? 4 2 SOME NECESSARY BACKGROUND 7 2.1
THERMODYNAMICS AND STATISTICAL MECHANICS: A QUICK REMINDER 7 2.1.1 BASIC
NOTIONS 7 2.1.2 PHASE TRANSITIONS 13 2.1.3 ERGODICITY AND BROKEN
SYMMETRY 24 2.1.4 FLUCTUATIONS AND THE GINZBURG CRITERION 25 2.1.5 A
STANDARD EXERCISE: THE FERROMAGNETIC ISING MODEL 25 2.2 PROBABILITY
THEORY 27 2.2.1 BASIC NOTIONS 27 2.2.2 SPECIAL PROBABILITY DISTRIBUTIONS
AND THE CENTRAL LIMIT THEOREM 29 2.2.3 STATISTICAL ERRORS 30 2.2.4
MARKOV CHAINS AND MASTER EQUATIONS 31 2.2.5 THE ART OF RANDOM NUMBER
GENERATION 32 2.3 NON-EQUILIBRIUM AND DYNAMICS: SOME INTRODUCTORY
COMMENTS 39 2.3.1 PHYSICAL APPLICATIONS OF MASTER EQUATIONS 39 2.3.2
CONSERVATION LAWS AND THEIR CONSEQUENCES 40 2.3.3 CRITICAL SLOWING DOWN
AT PHASE TRANSITIONS 43 2.3.4 TRANSPORT COEFFICIENTS 45 2.3.5 CONCLUDING
COMMENTS 45 REFERENCES 46 3 SIMPLE SAMPLING MONTE CARLO METHODS 48 3.1
INTRODUCTION 48 3.2 COMPARISONS OF METHODS FOR NUMERICAL INTEGRATION OF
GIVEN FUNCTIONS 48 VI CONTENTS 3.2.1 SIMPLE METHODS 48 3.2.2 INTELLIGENT
METHODS 50 3.3 BOUNDARY VALUE PROBLEMS 51 3.4 SIMULATION OF RADIOACTIVE
DECAY 53 3.5 SIMULATION OF TRANSPORT PROPERTIES 54 3.5.1 NEUTRON
TRANSPORT 54 3.5.2 FLUID FLOW 55 3.6 THE PERCOLATION PROBLEM 56 3.6.1
SITE PERCOLATION 56 3.6.2 CLUSTER COUNTING: THE HOSHEN-KOPELMAN
ALGORITHM 59 3.6.3 OTHER PERCOLATION MODEIS 60 3.7 FINDING THE
GROUNDSTATE OF A HAMILTONIAN 60 3.8 GENERATION OF RANDOM WALKS 61
3.8.1 INTRODUCTION 61 3.8.2 RANDOM WALKS 62 3.8.3 SELF-AVOIDING WALKS 63
3.8.4 GROWING WALKS AND OTHER MODEIS 65 3.9 FINAL REMARKS 66 REFERENCES
66 4 IMPORTANCE SAMPLING MONTE CARLO METHODS 68 4. 1 INTRODUCTION 68 4.2
THE SIMPLEST CASE: SINGLE SPIN-FLIP SAMPLING FOR THE SIMPLE ISING MODEL
69 4.2.1 ALGORITHM 70 4.2.2 BOUNDARY CONDITIONS 74 4.2.3 FINITE SIZE
EFFECTS 77 4.2.4 FINITE SAMPLING TIME EFFECTS 90 4.2.5 CRITICAL
RELAXATION 98 4.3 OTHER DISCRETE VARIABLE MODEIS 105 4.3.1 ISING MODEIS
WITH COMPETING INTERACTIONS 105 4.3.2 ^-STATE POTTS MODEIS 109 4.3.3
BAXTER AND BAXTER-WU MODEIS 110 4.3.4 CLOCK MODEIS 112 4.3.5 ISING SPIN
GLASS MODEIS 112 4.3.6 COMPLEX FLUID MODEIS 113 4.4 SPIN-EXCHANGE
SAMPLING 114 4.4.1 CONSTANT MAGNETIZATION SIMULATIONS 114 4.4.2 PHASE
SEPARATION 115 4.4.3 DIFFUSION 117 4.4.4 HYDRODYNAMIC SLOWING DOWN 119
4.5 MICROCANONICAL METHODS 119 4.5.1 DEMON ALGORITHM 119 4.5.2 DYNAMIC
ENSEMBLE 120 4.5.3 Q2R 120 4.6 GENERAL REMARKS, CHOICE OF ENSEMBLE 121
CONTENTS VII 4.7 STATICS AND DYNAMICS OF POLYMER MODEIS ON LATTICES 121
4.7.1 BACKGROUND 121 4.7.2 FIXED LENGTH BOND METHODS 122 4.7.3 BOND
FLUCTUATION METHOD 123 4.7.4 POLYMERS IN SOLUTIONS OF VARIABLE QUALITY:
OE-POINT, COLLAPSE TRANSITION, UNMIXING 124 4.7.5 EQUILIBRIUM POLYMERS: A
CASE STUDY 127 4.8 SOME ADVICE 130 REFERENCES 130 5 MORE ON IMPORTANCE
SAMPLING MONTE CARLO METHODS FOR LATTICE SYSTEMS 133 5.1 CLUSTER
FLIPPING METHODS 133 5.1.1 FORTUIN-KASTELEYN THEOREM 133 5.1.2
SWENDSEN*WANG METHOD 134 5.1.3 WOLFF METHOD 137 5.1.4 IMPROVED
ESTIMATORS 138 5.2 SPECIALIZED COMPUTATIONAL TECHNIQUES 139 5.2.1
EXPANDED ENSEMBLE METHODS 139 5.2.2 MULTISPIN CODING 139 5.2.3 IV-FOLD
WAY AND EXTENSIONS 140 5.2.4 HYBRID ALGORITHMS 142 5.2.5 MULTIGRID
ALGORITHMS 142 5.2.6 MONTE CARLO ON VECTOR COMPUTERS 143 5.2.7 MONTE
CARLO ON PARALLEL COMPUTERS 143 5.3 CLASSICAL SPIN MODEIS 144 5.3.1
INTRODUCTION 144 5.3.2 SIMPLE SPIN-FLIP METHOD 144 5.3.3 HEATBATH METHOD
146 5.3.4 LOW TEMPERATURE TECHNIQUES 147 5.3.5 OVER-RELAXATION METHODS
147 5.3.6 WOLFF EMBEDDING TRICK AND CLUSTER FLIPPING 148 5.3.7 HYBRID
METHODS 149 5.3.8 MONTE CARLO DYNAMICS VS. EQUATION OF MOTION DYNAMICS
150 5.3.9 TOPOLOGICAL EXCITATIONS AND SOLITONS 150 5.4 SYSTEMS WITH
QUENCHED RANDOMNESS 154 5.4.1 GENERAL COMMENTS: AVERAGING IN RANDOM
SYSTEMS 154 5.4.2 RANDOM FIELDS AND RANDOM BONDS 157 5.4.3 SPIN GLASSES
AND OPTIMIZATION BY SIMULATED ANNEALING 158 5.5 MODELS WITH MIXED
DEGREES OF FREEDOM: SI/GE ALLOYS, A CASE STUDY 163 5.6 SAMPLING THE FREE
ENERGY AND ENTROPY 164 5.6.1 THERMODYNAMIC INTEGRATION 164 5.6.2
GROUNDSTATE FREE ENERGY DETERMINATION 166 5.6.3 ESTIMATION OF INTENSIVE
VARIABLES: THE CHEMICAL POTENTIAL 166 5.6.4 LEE-KOSTERLITZ METHOD 167
VIII CONTENTS 5.6.5 FREE ENERGY FROM FINITE SIZE DEPENDENCE AT T C 167
5.7 MISCELLANEOUS TOPICS 168 5.7.1 INHOMOGENEOUS SYSTEMS: SURFACES,
INTERFACES, ETC. 168 5.7.2 OTHER MONTE CARLO SCHEMES 173 5.7.3 FINITE
SIZE EFFECTS: A REVIEW AND SUMMARY 174 5.7.4 MORE ABOUT ERROR ESTIMATION
175 5.7.5 RANDOM NUMBER GENERATORS REVISITED 176 5.8 SUMMARY AND
PERSPECTIVE 178 REFERENCES 179 6 OFF-LATTICE MODEIS 182 6.1 FLUIDS 182
6.1.1 NVT ENSEMBLE AND THE VIRIAL THEOREM 182 6.1.2 NPT ENSEMBLE 185
6.1.3 GRAND CANONICAL ENSEMBLE 189 6.1.4 SUBSYSTEMS: A CASE STUDY 192
6.1.5 GIBBS ENSEMBLE 197 6.1.6 WIDOM PARTICLE INSERTION METHOD AND
VARIANTS 200 6.2 SHORT RAENGE INTERACTIONS 202 6.2.1 CUTOFFS 202 6.2.2
VERLET TABLES AND CELL STRUCTURE 202 6.2.3 MINIMUM IMAGE CONVENTION 202
6.2.4 MIXED DEGREES OF FREEDOM RECONSIDERED 203 6.3 TREATMENT OF LONG
RAENGE FORCES 203 6.3.1 REACTION FIELD METHOD 203 6.3.2 EWALD METHOD 204
6.3.3 FAST MULTIPOLE METHOD 204 6.4 ADSORBED MONOLAYERS 205 6.4.1 SMOOTH
SUBSTRATES 205 6.4.2 PERIODIC SUBSTRATE POTENTIALS 206 6.5 COMPLEX
FLUIDS 207 6.6 POLYMERS: AN INTRODUCTION 210 6.6.1 LENGTH SCALES AND
MODEIS 210 6.6.2 ASYMMETRIE POLYMER MIXTURES: A CASE STUDY 216 6.6.3
APPLICATIONS: DYNAMICS OF POLYMER MELTS; THIN ADSORBED POLYMERIE FILMS
219 6.7 CONFIGURATIONAL BIAS AND SMART MONTE CARLO 224 REFERENCES 227
7 REWEIGHTING METHODS 230 7.1 BACKGROUND 230 7.1.1 DISTRIBUTION
FUNETIONS 230 7.1.2 UMBRELLA SAMPLING 230 7.2 SINGLE HISTOGRAM METHOD:
THE ISING MODEL AS A CASE STUDY 233 7.3 MULTI-HISTOGRAM METHOD 240 7.4
BROAD HISTOGRAM METHOD 240 7.5 MULTICANONICAL SAMPLING 241 CONTENTS IX
7.5.1 THE MULTICANONICAL APPROACH AND ITS RELATIONSHIP TO CANONICAL
SAMPLING 241 7.5.2 NEAR FIRST ORDER TRANSITIONS 243 7.5.3 GROUNDSTATES
IN COMPLICATED ENERGY LANDSCAPES 244 7.5.4 INTERFACE FREE ENERGY
ESTIMATION 245 7.6 A CASE STUDY: THE CASIMIR EFFECT IN CRITICAL SYSTEMS
246 REFERENCES 248 8 QUANTUM MONTE CARLO METHODS 250 8.1 INTRODUCTION
250 8.2 FEYNMAN PATH INTEGRAL FORMULATION 252 8.2.1 OFF-LATTICE
PROBLEMS: LOW-TEMPERATURE PROPERTIES OF CRYSTALS 252 8.2.2 BOESE
STATISTICS AND SUPERFLUIDITY 258 8.2.3 PATH INTEGRAL FORMULATION FOR
ROTATIONAL DEGREES OF FREEDOM 259 8.3 LATTICE PROBLEMS 261 8.3.1 THE
ISING MODEL IN A TRANSVERSE FIELD 261 8.3.2 ANISOTROPIE HEISENBERG CHAIN
263 8.3.3 FERMIONS ON A LATTICE 266 8.3.4 AN INTERMEZZO: THE MINUS SIGN
PROBLEM 269 8.3.5 SPINLESS FERMIONS REVISITED 271 8.3.6 CLUSTER METHODS
FOR QUANTUM LATTICE MODEIS 274 8.3.7 DECOUPLED CELL METHOD 275 8.3.8
HANDSCOMB S METHOD 276 8.3.9 FERMION DETERMINANTS 277 8.4 MONTE CARLO
METHODS FOR THE STUDY OF GROUNDSTATE PROPERTIES 278 8.4.1 VARIATIONAL
MONTE CARLO (VMC) 279 8.4.2 GREEN S FUNETION MONTE CARLO METHODS (GFMC)
280 8.5 CONCLUDING REMARKS 283 REFERENCES 283 9 MONTE CARLO
RENORMALIZATION GROUP METHODS 286 9.1 INTRODUCTION TO RENORMALIZATION
GROUP THEORY 286 9.2 REAL SPACE RENORMALIZATION GROUP 290 9.3 MONTE
CARLO RENORMALIZATION GROUP 291 9.3.1 LARGE CELL RENORMALIZATION 291
9.3.2 MA S METHOD: FINDING CRITICAL EXPONENTS AND THE FIXED POINT
HAMILTONIAN 293 9.3.3 SWENDSEN S METHOD 294 9.3.4 LOCATION OF PHASE
BOUNDARIES 296 9.3.5 DYNAMIC PROBLEMS: MATCHING TIME-DEPENDENT
CORRELATION FUNETIONS 297 REFERENCES 298 10 NON-EQUILIBRIUM AND
IRREVERSIBLE PROCESSES 299 10.1 INTRODUCTION AND PERSPECTIVE 299 10.2
DRIVEN DIFFUSIVE SYSTEMS (DRIVEN LATTICE GASES) 299 10.3 CRYSTAL GROWTH
301 X CONTENTS 10.4 DOMAIN GROWTH 304 10.5 POLYMER GROWTH 306 10.5.1
LINEAR POLYMERS 306 10.5.2 GELATION 306 10.6 GROWTH OF STRUCTURES AND
PATTERNS 308 10.6.1 EDEN MODEL OF CLUSTER GROWTH 308 10.6.2 DIFFUSION
LIMITED AGGREGATION 308 10.6.3 CLUSTER-CLUSTER AGGREGATION 311 10.6.4
CELLULAR AUTOMATA 311 10.7 MODELS FOR FILM GROWTH 312 10.7.1 BACKGROUND
312 10.7.2 BALLISTIC DEPOSITION 313 10.7.3 SEDIMENTATION 314 10.7.4
KINETIC MONTE CARLO AND MBE GROWTH 315 10.8 OUTLOOK: VARIATIONS ON A
THEME 317 REFERENCES 318 11 LATTICE GAUGE MODEIS: A BRIEF INTRODUCTION
320 11.1 INTRODUCTION: GAUGE INVARIANCE AND LATTICE GAUGE THEORY 320
11.2 SOME TECHNICAL MATTERS 322 11.3 RESULTS FOR Z{N) LATTICE GAUGE
MODEIS 322 11.4 COMPACT U(L) GAUGE THEORY 323 11.5 SU(2) LATTICE GAUGE
THEORY 324 11.6 INTRODUCTION: QUANTUM CHROMODYNAMICS (QCD) AND PHASE
TRANSITIONS OF NUCLEAR MATTER 325 11.7 THE DECONFINEMENT TRANSITION OF
QCD 327 REFERENCES 330 12 A BRIEF REVIEW OF OTHER METHODS OF COMPUTER
SIMULATION 332 12.1 INTRODUCTION 332 12.2 MOLECULAR DYNAMICS 332 12.2.1
INTEGRATION METHODS (MICROCANONICAL ENSEMBLE) 332 12.2.2 OTHER ENSEMBLES
(CONSTANT TEMPERATURE, CONSTANT PRESSURE, ETC.) 336 12.2.3
NON-EQUILIBRIUM MOLECULAR DYNAMICS 339 12.2.4 HYBRID METHODS (MD + MC)
339 12.2.5 AB INITIO MOLECULAR DYNAMICS 339 12.3 QUASI-CLASSICAL SPIN
DYNAMICS 340 12.4 LANGEVIN EQUATIONS AND VARIATIONS (CELL DYNAMICS) 343
12.5 LATTICE GAS CELLULAR AUTOMATA 344 REFERENCES 345 13 OUTLOOK 346
APPENDIX: LISTING OF PROGRAMS MENTIONED IN THE TEXT 348 INDEX 379
|
any_adam_object | 1 |
author | Landau, David P. 1941- |
author_GND | (DE-588)131584960 |
author_facet | Landau, David P. 1941- |
author_role | aut |
author_sort | Landau, David P. 1941- |
author_variant | d p l dp dpl |
building | Verbundindex |
bvnumber | BV019317890 |
ctrlnum | (OCoLC)174678263 (DE-599)BVBBV019317890 |
edition | [Nachdr.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01943nam a2200457zc 4500</leader><controlfield tag="001">BV019317890</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">040609s2002 xxkd||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521653142</subfield><subfield code="9">0-521-65314-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521653665</subfield><subfield code="9">0-521-65366-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174678263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019317890</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landau, David P.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131584960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A guide to Monte Carlo simulations in statistical physics</subfield><subfield code="c">David P. Landau ; Kurt Binder</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Monte Carlo simulations in statistical physics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 384 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Binder, Kurt</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/samples/cam034/99038308.html</subfield><subfield code="3">Sample text</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/cam0210/99038308.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/cam021/99038308.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012785349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012785349</subfield></datafield></record></collection> |
id | DE-604.BV019317890 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:57:31Z |
institution | BVB |
isbn | 0521653142 0521653665 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-012785349 |
oclc_num | 174678263 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XIII, 384 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Landau, David P. 1941- Verfasser (DE-588)131584960 aut A guide to Monte Carlo simulations in statistical physics David P. Landau ; Kurt Binder Monte Carlo simulations in statistical physics [Nachdr.] Cambridge [u.a.] Cambridge Univ. Press 2002 XIII, 384 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Monte-Carlo-Simulation swd Statistische Physik swd Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Monte-Carlo-Simulation (DE-588)4240945-7 s Statistische Physik (DE-588)4057000-9 s DE-604 Binder, Kurt Sonstige oth http://www.loc.gov/catdir/samples/cam034/99038308.html Sample text http://www.loc.gov/catdir/description/cam0210/99038308.html Publisher description http://www.loc.gov/catdir/toc/cam021/99038308.html Table of contents GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012785349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Landau, David P. 1941- A guide to Monte Carlo simulations in statistical physics Monte-Carlo-Simulation swd Statistische Physik swd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Statistische Physik (DE-588)4057000-9 gnd |
subject_GND | (DE-588)4240945-7 (DE-588)4057000-9 |
title | A guide to Monte Carlo simulations in statistical physics |
title_alt | Monte Carlo simulations in statistical physics |
title_auth | A guide to Monte Carlo simulations in statistical physics |
title_exact_search | A guide to Monte Carlo simulations in statistical physics |
title_full | A guide to Monte Carlo simulations in statistical physics David P. Landau ; Kurt Binder |
title_fullStr | A guide to Monte Carlo simulations in statistical physics David P. Landau ; Kurt Binder |
title_full_unstemmed | A guide to Monte Carlo simulations in statistical physics David P. Landau ; Kurt Binder |
title_short | A guide to Monte Carlo simulations in statistical physics |
title_sort | a guide to monte carlo simulations in statistical physics |
topic | Monte-Carlo-Simulation swd Statistische Physik swd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Statistische Physik (DE-588)4057000-9 gnd |
topic_facet | Monte-Carlo-Simulation Statistische Physik |
url | http://www.loc.gov/catdir/samples/cam034/99038308.html http://www.loc.gov/catdir/description/cam0210/99038308.html http://www.loc.gov/catdir/toc/cam021/99038308.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012785349&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT landaudavidp aguidetomontecarlosimulationsinstatisticalphysics AT binderkurt aguidetomontecarlosimulationsinstatisticalphysics AT landaudavidp montecarlosimulationsinstatisticalphysics AT binderkurt montecarlosimulationsinstatisticalphysics |