The art of the infinite: the pleasures of mathematics
The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through D...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved the infinity can come in different sizes. The Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the "Republic of Numbers," where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: The intuitionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. "Less than All," wrote William Blake, "cannot satisfy Man." The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination. |
Beschreibung: | IX, 324 S. Ill., graph. Darst. |
ISBN: | 019514743X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV017207630 | ||
003 | DE-604 | ||
005 | 20040914 | ||
007 | t | ||
008 | 030611s2003 gw ad|| |||| 00||| ger d | ||
020 | |a 019514743X |9 0-19-514743-X | ||
035 | |a (OCoLC)51962641 | ||
035 | |a (DE-599)BVBBV017207630 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-Aug4 |a DE-634 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 512.7 | |
082 | 0 | |a 515/.243 |2 22 | |
084 | |a SG 500 |0 (DE-625)143049: |2 rvk | ||
084 | |a SN 100 |0 (DE-625)143330: |2 rvk | ||
100 | 1 | |a Kaplan, Robert |d 1933- |e Verfasser |0 (DE-588)124608302 |4 aut | |
245 | 1 | 0 | |a The art of the infinite |b the pleasures of mathematics |c Robert Kaplan and Ellen Kaplan |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2003 | |
300 | |a IX, 324 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved the infinity can come in different sizes. The Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the "Republic of Numbers," where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: The intuitionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. "Less than All," wrote William Blake, "cannot satisfy Man." The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination. | |
650 | 4 | |a Infini | |
650 | 4 | |a Processus infinis | |
650 | 4 | |a Processes, Infinite | |
650 | 4 | |a Series, Infinite | |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Kaplan, Ellen |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010370933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010370933 |
Datensatz im Suchindex
_version_ | 1804130060438863872 |
---|---|
adam_text | F WE TUE PLE^NSIWES O-P ROBERT KAPLAN AND ELLEN KAPLAN ILLUSTRATIONS BY
ELLEN KAPLAN OXPORD UNIVERSITY PRESS 2003 CU » PFEV TWO HOW DO WE HOU
TUESE TVI*H S? 21 TUE K-PLNIF* FOIAV 77 ^ A / LONE LH IN^LNLFE TUE / VF
O-P FUE IN-PINIFE TUE E* SEVEN INFO H E HL TUE IN-PINIFE ZOO O-P BEYOND
102 NINE TUE ABYSS US *51T 5 V*III
|
any_adam_object | 1 |
author | Kaplan, Robert 1933- Kaplan, Ellen |
author_GND | (DE-588)124608302 |
author_facet | Kaplan, Robert 1933- Kaplan, Ellen |
author_role | aut aut |
author_sort | Kaplan, Robert 1933- |
author_variant | r k rk e k ek |
building | Verbundindex |
bvnumber | BV017207630 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SG 500 SN 100 |
ctrlnum | (OCoLC)51962641 (DE-599)BVBBV017207630 |
dewey-full | 512.7 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 515 - Analysis |
dewey-raw | 512.7 515/.243 |
dewey-search | 512.7 515/.243 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03089nam a2200505 c 4500</leader><controlfield tag="001">BV017207630</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040914 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030611s2003 gw ad|| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019514743X</subfield><subfield code="9">0-19-514743-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51962641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017207630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 500</subfield><subfield code="0">(DE-625)143049:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SN 100</subfield><subfield code="0">(DE-625)143330:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaplan, Robert</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124608302</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The art of the infinite</subfield><subfield code="b">the pleasures of mathematics</subfield><subfield code="c">Robert Kaplan and Ellen Kaplan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 324 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved the infinity can come in different sizes. The Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the "Republic of Numbers," where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: The intuitionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. "Less than All," wrote William Blake, "cannot satisfy Man." The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infini</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus infinis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processes, Infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series, Infinite</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaplan, Ellen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010370933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010370933</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV017207630 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:15:02Z |
institution | BVB |
isbn | 019514743X |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010370933 |
oclc_num | 51962641 |
open_access_boolean | |
owner | DE-703 DE-Aug4 DE-634 |
owner_facet | DE-703 DE-Aug4 DE-634 |
physical | IX, 324 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Kaplan, Robert 1933- Verfasser (DE-588)124608302 aut The art of the infinite the pleasures of mathematics Robert Kaplan and Ellen Kaplan Oxford [u.a.] Oxford Univ. Press 2003 IX, 324 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved the infinity can come in different sizes. The Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the "Republic of Numbers," where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: The intuitionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. "Less than All," wrote William Blake, "cannot satisfy Man." The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination. Infini Processus infinis Processes, Infinite Series, Infinite Geschichte (DE-588)4020517-4 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Mathematik (DE-588)4037944-9 s Geschichte (DE-588)4020517-4 s DE-604 Kaplan, Ellen Verfasser aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010370933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kaplan, Robert 1933- Kaplan, Ellen The art of the infinite the pleasures of mathematics Infini Processus infinis Processes, Infinite Series, Infinite Geschichte (DE-588)4020517-4 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4020517-4 (DE-588)4037944-9 (DE-588)4151278-9 |
title | The art of the infinite the pleasures of mathematics |
title_auth | The art of the infinite the pleasures of mathematics |
title_exact_search | The art of the infinite the pleasures of mathematics |
title_full | The art of the infinite the pleasures of mathematics Robert Kaplan and Ellen Kaplan |
title_fullStr | The art of the infinite the pleasures of mathematics Robert Kaplan and Ellen Kaplan |
title_full_unstemmed | The art of the infinite the pleasures of mathematics Robert Kaplan and Ellen Kaplan |
title_short | The art of the infinite |
title_sort | the art of the infinite the pleasures of mathematics |
title_sub | the pleasures of mathematics |
topic | Infini Processus infinis Processes, Infinite Series, Infinite Geschichte (DE-588)4020517-4 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Infini Processus infinis Processes, Infinite Series, Infinite Geschichte Mathematik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010370933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kaplanrobert theartoftheinfinitethepleasuresofmathematics AT kaplanellen theartoftheinfinitethepleasuresofmathematics |