The conformal structure of space time: geometry, analysis, numerics
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2002
|
Schriftenreihe: | Lecture notes in physics
604 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 372 S. graph. Darst. |
ISBN: | 3540442804 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV014811405 | ||
003 | DE-604 | ||
005 | 20050620 | ||
007 | t | ||
008 | 021008s2002 gw d||| |||| 10||| eng d | ||
016 | 7 | |a 965303101 |2 DE-101 | |
020 | |a 3540442804 |9 3-540-44280-4 | ||
035 | |a (OCoLC)50773619 | ||
035 | |a (DE-599)BVBBV014811405 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-384 |a DE-91G |a DE-11 | ||
050 | 0 | |a QC173.59.S65 | |
082 | 0 | |a 530.11 |2 21 | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a PHY 040f |2 stub | ||
245 | 1 | 0 | |a The conformal structure of space time |b geometry, analysis, numerics |c J. Frauendiener ... (ed.) |
246 | 1 | 3 | |a The conformal structure of space-time |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2002 | |
300 | |a XIV, 372 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v 604 | |
490 | 0 | |a Physics and astronomy online library | |
650 | 7 | |a Física |2 larpcal | |
650 | 4 | |a Conformal geometry | |
650 | 4 | |a Space and time | |
650 | 0 | 7 | |a Raum-Zeit |0 (DE-588)4302626-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konforme Struktur |0 (DE-588)4500911-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2002 |z Tübingen |2 gnd-content | |
689 | 0 | 0 | |a Raum-Zeit |0 (DE-588)4302626-6 |D s |
689 | 0 | 1 | |a Konforme Struktur |0 (DE-588)4500911-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Frauendiener, Jörg |e Sonstige |4 oth | |
830 | 0 | |a Lecture notes in physics |v 604 |w (DE-604)BV000003166 |9 604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010022082&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-010022082 |
Datensatz im Suchindex
_version_ | 1804129584392699904 |
---|---|
adam_text | CONTENTS 1 CONFORMAL EINSTEIN EVOLUTION HELMUT FRIEDRICH
................................................... 1 1.1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 1.2 THE CONFORMAL FIELD EQUATIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 4 1.2.1 CONFORMAL GEOMETRY . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2
DERIVATION OF THE CONFORMAL FIELD EQUATIONS . . . . . . . . . . . 9 1.3
THE PENROSE PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 21 1.4 ASYMPTOTIC BEHAVIOUR OF VACUUM FIELDS
WITH VANISHING COSMOLOGICAL CONSTANT . . . . . . . . . . . . . . . . . .
. . . . . 29 1.4.1 THE HYPERBOLOIDAL INITIAL VALUE PROBLEM. . . . . . .
. . . . . . . . 30 1.4.2 ON THE EXISTENCE OF ASYMPTOTICALLY SIMPLE
VACUUM SOLUTIONS . . . . . . . . . . . . 31 1.4.3 THE REGULAR FINITE
CAUCHY PROBLEM. . . . . . . . . . . . . . . . . . . 33 1.4.4 TIME-LIKE
INFINITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 42 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 SOME GLOBAL
RESULTS FOR ASYMPTOTICALLY SIMPLE SPACE-TIMES GREGORY J. GALLOWAY
................................................ 51 2.1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 51 2.2 THE NULL SPLITTING THEOREM. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 53 2.3 PROOF OF THEOREM 2.1 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 55 2.4 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 58 REFERENCES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 59 3 BLACK HOLES PIOTR T. CHRU´ SCIEL
................................................. 61 3.1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 61 3.2 EXPERIMENTAL EVIDENCE . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 CAUSALITY FOR
SYMMETRIC HYPERBOLIC SYSTEMS . . . . . . . . . . . . . . . . . 65 3.3.1
DUMB HOLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 69 3.3.2 OPTICAL HOLES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 70 3.3.3 TRAPPED SURFACES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 STANDARD BLACK HOLES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 71 3.4.1 SCRI REGULARITY CONDITIONS, AND THE
AREA THEOREM . . . . . . 75 3.5 HORIZONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6
APPARENT HORIZONS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 79 X CONTENTS 3.7 CLASSIFICATION OF STATIONARY
SOLUTIONS (*NO HAIR THEOREMS*) . . . . 80 3.8 BLACK HOLES WITHOUT SCRI .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.1 NAIVE BLACK HOLES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 84 3.8.2 QUASI-LOCAL BLACK HOLES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 86 3.8.3 FINDING HORIZONS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 96 4 CONFORMAL GEOMETRY,
DIFFERENTIAL EQUATIONS AND ASSOCIATED TRANSFORMATIONS SIMONETTA
FRITTELLI, NIKY KAMRAN, EZRA T. NEWMAN .................... 103 4.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 103 4.2 EXAMPLE OF CONTACT-ENVELOPE
TRANSFORMATION . . . . . . . . . . . . . . . . . 105 4.3 GENERALIZATIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 109 4.3.1 THREE-DIMENSIONAL CONFORMAL LORENTZIAN
GEOMETRIES . . . . 109 4.3.2 FOUR-DIMENSIONAL CONFORMAL LORENTZIAN
GEOMETRIES . . . . . 110 REFERENCES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111 5 TWISTOR GEOMETRY OF CONFORMAL INFINITY ROGER PENROSE
..................................................... 113 5.1 NON-LINEAR
GRAVITONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 113 5.2 THE REASONABLENESS OF I + . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 115 5.3 THE CONSTRUCTION
OF PROJECTIVE TWISTOR SPACE P T FROM I + . . . . . 115 5.4 THE
CONSTRUCTION OF THE FULL TWISTOR SPACE T FROM I + . . . . . . . . 117
5.5 THE LOCAL STRUCTURE OF TWISTOR SPACE P T . . . . . . . . . . . . . .
. . . . . . 118 5.6 PRESENT STATUS OF THE ROLE OF T IN ENCODING
RICCI-FLATNESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 119 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6
ISOTROPIC COSMOLOGICAL SINGULARITIES K. PAUL TOD
....................................................... 123 6.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 123 6.2 FORMALISM AND EXTENSIONS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3
REVIEW OF POLYTROPIC PERFECT FLUID CASE . . . . . . . . . . . . . . . .
. . . . . . 128 6.4 FURTHER MATTER MODELS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 131 6.4.1 MASSIVE
EINSTEIN-VLASOV . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 132 6.4.2 SCALAR FIELDS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 132 6.4.3 EINSTEIN-YANG-MILLS-VLASOV . .
. . . . . . . . . . . . . . . . . . . . . . . . . 132 6.4.4
EINSTEIN-BOLTZMANN . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 132 6.5 CONCLUSION AND FUTURE POSSIBILITIES . . . . . . . .
. . . . . . . . . . . . . . . . . . 133 REFERENCES . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 133 7 POLYHOMOGENEOUS EXPANSIONS CLOSE TO NULL AND SPATIAL
INFINITY JUAN ANTONIO VALIENTE KROON
........................................ 135 7.1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 135 7.2 MINKOWSKI SPACE-TIME CLOSE TO NULL AND SPATIAL
INFINITY . . . . . . . 136 7.3 LINEARISED GRAVITY IN THE F-GAUGE . . . .
. . . . . . . . . . . . . . . . . . . . . . . 138 CONTENTS XI 7.3.1
INITIAL DATA FOR LINEARISED GRAVITY . . . . . . . . . . . . . . . . . .
. . 140 7.4 A REGULARITY CONDITION AT SPATIAL INFINITY . . . . . . . . .
. . . . . . . . . . . 142 7.5 POLYHOMOGENEOUS EXPANSIONS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 145 7.5.1 A SUBSTRACTION
ARGUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5.2 AN INVESTIGATION OF EXPANSIONS CLOSE TO NULL INFINITY . . . . 147
7.5.3 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 157 REFERENCES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8
ASYMPTOTICALLY FLAT AND REGULAR CAUCHY DATA SERGIO DAIN
....................................................... 161 8.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 161 8.2 SOLUTION OF THE HAMILTONIAN
CONSTRAINT WITH LOGARITHMIC TERMS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 172 8.3 EXPLICIT SOLUTIONS OF THE
MOMENTUM CONSTRAINT . . . . . . . . . . . . . . . 173 8.3.1 THE MOMENTUM
CONSTRAINT ON EUCLIDEAN SPACE . . . . . . . . . 173 8.3.2 AXIALLY
SYMMETRIC INITIAL DATA . . . . . . . . . . . . . . . . . . . . . . . 176
8.4 MAIN IDEAS IN THE PROOF OF THEOREM 8.1 . . . . . . . . . . . . . . .
. . . . . . . 178 8.5 FINAL COMMENTS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 180 REFERENCES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 180 9 CONSTRUCTION OF HYPERBOLOIDAL INITIAL
DATA LARS ANDERSSON ....................................................
183 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 183 9.2 PRELIMINARIES. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 184 9.3 CONFORMAL RESCALINGS OF MINKOWSKI SPACE . . . . . . . .
. . . . . . . . . . . . 185 9.4 CONFORMAL CONSTRAINT EQUATIONS. . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 187 9.4.1 CONSTANT MEAN
CURVATURE HYPERSURFACES. . . . . . . . . . . . . . . 188 9.4.2
DEGENERATE ELLIPTIC EQUATIONS . . . . . . . . . . . . . . . . . . . . .
. . . 189 9.4.3 REGULARITY OF SOLUTIONS TO THE CONFORMAL CONSTRAINT
EQUATIONS . . . . . . . . . . . . . . . . 190 9.5 THE INITIAL VALUE
PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 191 9.5.1 GAUGE CONDITION AT *M . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 191 9.5.2 EVOLUTION AT * M . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 192 9.6 DISCUSSION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 193 REFERENCES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10
EXPLORING THE CONFORMAL CONSTRAINT EQUATIONS ADRIAN BUTSCHER
................................................... 195 10.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 195 10.2 THE CONFORMAL CONSTRAINT
EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . 197 10.2.1
DERIVING THE EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 197 10.2.2 REDUCTION TO THE EXTENDED CONSTRAINT EQUATIONS . .
. . . . . 201 10.2.3 PROPERTIES OF THE EXTENDED CONSTRAINT EQUATIONS . .
. . . . . 202 10.3 ASYMPTOTICALLY FLAT SOLUTIONS OF THE EXTENDED
CONSTRAINT EQUATIONS IN THE TIME SYMMETRIC CASE. . . . . . . . . . . . .
206 10.3.1 STATEMENT OF THE MAIN THEOREM . . . . . . . . . . . . . . . .
. . . . . . 206 XII CONTENTS 10.3.2 FORMULATING AN ELLIPTIC PROBLEM . .
. . . . . . . . . . . . . . . . . . . . 208 10.3.3 CHOOSING THE BANACH
SPACES . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.3.4
FIRST ATTEMPT TO SOLVE THE ASSOCIATED SYSTEM . . . . . . . . . 212
10.3.5 REESTABLISHING SURJECTIVITY AND SOLVING THE ASSOCIATED SYSTEM . .
. . . . . . . . . . . . . . . . . . 215 10.3.6 SATISFYING THE HARMONIC
COORDINATE CONDITION. . . . . . . . . . 217 REFERENCES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 221 11 CRITERIA FOR (IN)FINITE EXTENT OF STATIC PERFECT
FLUIDS WALTER SIMON
..................................................... 223 11.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 223 11.2 THE MAIN THEOREM . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.3 THE VIRIAL THEOREM. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 230 11.4 PROOF OF THE MAIN THEOREM . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 11.5
DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 235 REFERENCES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 237 12 PROBLEMS AND SUCCESSES IN THE NUMERICAL APPROACH TO THE
CONFORMAL FIELD EQUATIONS SASCHA HUSA
...................................................... 239 12.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 239 12.2 ALGORITHMS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 240 12.2.1 PROBLEM OVERVIEW . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 240 12.2.2 CONSTRUCTION OF *EXTENDED*
HYPERBOLOIDAL INITIAL DATA . . 243 12.2.3 BLACK HOLE INITIAL DATA . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 246 12.2.4
NUMERICAL SETUP FOR EVOLUTIONS . . . . . . . . . . . . . . . . . . . . .
. . 247 12.2.5 PHYSICS EXTRACTION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 248 12.3 RESULTS FOR WEAK DATA . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 12.4
COMPUTATIONAL ASPECTS. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 251 12.5 DISCUSSION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 257 13 SOME ASPECTS OF THE
NUMERICAL TREATMENT OF THE CONFORMAL FIELD EQUATIONS J¨ ORG FRAUENDIENER
.................................................. 261 13.1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 261 13.2 THE ANDERSSON-CHRU´ SCIEL-FRIEDRICH
PROCEDURE . . . . . . . . . . . . . . . . . 263 13.3 THE LICHN´
EROWICZ*YAMABE*EQUATION . . . . . . . . . . . . . . . . . . . . . . . .
. 266 13.4 CONSTRUCTING INITIAL DATA . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 273 13.5 CONCLUSION. . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 278 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 280 14 DATA FOR THE
NUMERICAL CALCULATION OF THE KRUSKAL SPACE-TIME BERND G. SCHMIDT
.................................................. 283 14.1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 283 14.2 CONFORMAL EXTENSION OF THE KRUSKAL
SPACE-TIME. . . . . . . . . . . . . . . 284 CONTENTS XIII 14.3 A
SPACE-LIKE HYPERSURFACE INTERSECTING I + L AND I + R . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 289 14.4 A FOLIATION
INTERSECTING BOTH I . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 292 14.5 NUMERICAL CALCULATION OF THE KRUSKAL SPACE-TIME . . . . .
. . . . . . . . 293 REFERENCES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 15
NUMERICS OF THE CHARACTERISTIC FORMULATION IN BONDI VARIABLES. WHERE WE
ARE AND WHAT LIES AHEAD LUIS LEHNER
....................................................... 297 15.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 297 15.2 CHARACTERISTIC FORMULATION OF
GR IN BONDI VARIABLES . . . . . . . . . . . 298 15.2.1 INITIAL BOUNDARY
VALUE PROBLEM . . . . . . . . . . . . . . . . . . . . . . 299 15.2.2
NEWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 301 15.2.3 INERTIAL COORDINATES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 302 15.3 NUMERICAL
DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 304 15.4 APPLICATIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 15.4.1
BLACK HOLE-STAR BINARIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 306 15.4.2 BINARY BLACK HOLE PROBLEM . . . . . . . . . . . . .
. . . . . . . . . . . . . 308 15.5 FINAL COMMENTS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 311 16 NUMERICAL EXPERIMENTS
AT NULL INFINITY ROBERT A. BARTNIK, ANDREW H. NORTON
................................ 313 16.1 INTRODUCTION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 313 16.2 NQS METRICS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 315 16.3 NQS FORMAL
ASYMPTOTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 317 16.4 GENERICITY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 321 16.5 THE NQS
CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 322 16.6 NUMERICAL RESULTS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 REFERENCES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 325 17 LOCAL CHARACTERISTIC ALGORITHMS
FOR RELATIVISTIC HYDRODYNAMICS JOS´ E A. FONT
...................................................... 327 17.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 327 17.2 RELATIVISTIC HYDRODYNAMIC
EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . 329 17.3
HIGH-RESOLUTION NUMERICAL SCHEMES . . . . . . . . . . . . . . . . . . .
. . . . . . 332 17.4 APPLICATIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 336 17.4.1 SHOCK
TUBE TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 336 17.4.2 GRAVITATIONAL COLLAPSE OF SUPERMASSIVE STARS . . .
. . . . . . . . 338 17.4.3 NULL CONE EVOLUTION OF RELATIVISTIC STARS. .
. . . . . . . . . . . . . 340 17.5 SUMMARY . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 344 XIV CONTENTS 18
SIMULATIONS OF GENERIC SINGULARITIES IN HARMONIC COORDINATES DAVID
GARFINKLE .................................................... 349 18.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 349 18.2 EQUATIONS AND NUMERICAL
METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . 351 18.3
RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 352 18.4 DISCUSSION . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 356 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 19 SOME
MATHEMATICAL AND NUMERICAL QUESTIONS CONNECTED WITH FIRST AND SECOND
ORDER TIME-DEPENDENT SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS HEINZ-O.
KREISS, OMAR E. ORTIZ ..................................... 359 19.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 359 19.2 WELL POSED PROBLEMS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
19.2.1 FIRST ORDER SYSTEMS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 360 19.2.2 SECOND ORDER SYSTEMS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 362 19.3 SECOND ORDER INITIAL
VALUE FORMULATIONS FOR GENERAL RELATIVITY . . 364 19.4 DIFFERENCE
APPROXIMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 366 19.5 CONSTRAINTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 368 REFERENCES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 370
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV014811405 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.59.S65 |
callnumber-search | QC173.59.S65 |
callnumber-sort | QC 3173.59 S65 |
callnumber-subject | QC - Physics |
classification_rvk | UD 8220 |
classification_tum | PHY 040f |
ctrlnum | (OCoLC)50773619 (DE-599)BVBBV014811405 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01880nam a22004938cb4500</leader><controlfield tag="001">BV014811405</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050620 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021008s2002 gw d||| |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">965303101</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540442804</subfield><subfield code="9">3-540-44280-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50773619</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014811405</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.59.S65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 040f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The conformal structure of space time</subfield><subfield code="b">geometry, analysis, numerics</subfield><subfield code="c">J. Frauendiener ... (ed.)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The conformal structure of space-time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 372 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">604</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Física</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space and time</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Struktur</subfield><subfield code="0">(DE-588)4500911-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2002</subfield><subfield code="z">Tübingen</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raum-Zeit</subfield><subfield code="0">(DE-588)4302626-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konforme Struktur</subfield><subfield code="0">(DE-588)4500911-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frauendiener, Jörg</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">604</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010022082&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010022082</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2002 Tübingen gnd-content |
genre_facet | Konferenzschrift 2002 Tübingen |
id | DE-604.BV014811405 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:07:28Z |
institution | BVB |
isbn | 3540442804 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010022082 |
oclc_num | 50773619 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-384 DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-384 DE-91G DE-BY-TUM DE-11 |
physical | XIV, 372 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics Physics and astronomy online library |
spelling | The conformal structure of space time geometry, analysis, numerics J. Frauendiener ... (ed.) The conformal structure of space-time Berlin [u.a.] Springer 2002 XIV, 372 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics 604 Physics and astronomy online library Física larpcal Conformal geometry Space and time Raum-Zeit (DE-588)4302626-6 gnd rswk-swf Konforme Struktur (DE-588)4500911-9 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2002 Tübingen gnd-content Raum-Zeit (DE-588)4302626-6 s Konforme Struktur (DE-588)4500911-9 s DE-604 Frauendiener, Jörg Sonstige oth Lecture notes in physics 604 (DE-604)BV000003166 604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010022082&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The conformal structure of space time geometry, analysis, numerics Lecture notes in physics Física larpcal Conformal geometry Space and time Raum-Zeit (DE-588)4302626-6 gnd Konforme Struktur (DE-588)4500911-9 gnd |
subject_GND | (DE-588)4302626-6 (DE-588)4500911-9 (DE-588)1071861417 |
title | The conformal structure of space time geometry, analysis, numerics |
title_alt | The conformal structure of space-time |
title_auth | The conformal structure of space time geometry, analysis, numerics |
title_exact_search | The conformal structure of space time geometry, analysis, numerics |
title_full | The conformal structure of space time geometry, analysis, numerics J. Frauendiener ... (ed.) |
title_fullStr | The conformal structure of space time geometry, analysis, numerics J. Frauendiener ... (ed.) |
title_full_unstemmed | The conformal structure of space time geometry, analysis, numerics J. Frauendiener ... (ed.) |
title_short | The conformal structure of space time |
title_sort | the conformal structure of space time geometry analysis numerics |
title_sub | geometry, analysis, numerics |
topic | Física larpcal Conformal geometry Space and time Raum-Zeit (DE-588)4302626-6 gnd Konforme Struktur (DE-588)4500911-9 gnd |
topic_facet | Física Conformal geometry Space and time Raum-Zeit Konforme Struktur Konferenzschrift 2002 Tübingen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010022082&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT frauendienerjorg theconformalstructureofspacetimegeometryanalysisnumerics AT frauendienerjorg theconformalstructureofspacetime |