Algebraic quotients:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2002
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
131 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Enth. u.a.: Torus actions and cohomology / J. B. Carrell |
Beschreibung: | 242 S. graph. Darst. |
ISBN: | 3540432116 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV014336247 | ||
003 | DE-604 | ||
005 | 20080611 | ||
007 | t | ||
008 | 020607s2002 d||| |||| 00||| eng d | ||
020 | |a 3540432116 |9 3-540-43211-6 | ||
035 | |a (OCoLC)49937446 | ||
035 | |a (DE-599)BVBBV014336247 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-91G |a DE-20 |a DE-634 |a DE-188 | ||
050 | 0 | |a QA251.5 | |
082 | 0 | |a 512.2 |2 21 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a MAT 140f |2 stub | ||
100 | 1 | |a Białynicki-Birula, Andrzej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic quotients |c A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern |
246 | 1 | 3 | |a Nebent.: Quotients by actions of groups |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2002 | |
300 | |a 242 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 131 | |
490 | 1 | |a Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups |v 2 | |
500 | |a Enth. u.a.: Torus actions and cohomology / J. B. Carrell | ||
650 | 7 | |a Geometria algébrica |2 larpcal | |
650 | 4 | |a Homologie | |
650 | 4 | |a Lie, Algèbres de | |
650 | 4 | |a Lie, Groupes de | |
650 | 7 | |a Teoria geométrica de invariantes |2 larpcal | |
650 | 4 | |a Torsion, Théorie de la (Algèbre) | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Quotient rings | |
650 | 4 | |a Torsion theory (Algebra) | |
650 | 0 | 7 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppenoperation |0 (DE-588)4158467-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Gruppe |0 (DE-588)4001164-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Gruppe |0 (DE-588)4001164-1 |D s |
689 | 0 | 1 | |a Gruppenoperation |0 (DE-588)4158467-3 |D s |
689 | 0 | 2 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Carrell, James B. |e Verfasser |4 aut | |
700 | 1 | |a McGovern, William M. |d 1959- |e Verfasser |0 (DE-588)124769179 |4 aut | |
700 | 1 | 2 | |a Białynicki-Birula, Andrzej |4 aut |t Quotients by actions of groups |
700 | 1 | 2 | |a Carrell, James B. |4 aut |t Torus actions and cohomology |
810 | 2 | |a Invariant theory and algebraic transformation groups |t Encyclopaedia of mathematical sciences |v 2 |w (DE-604)BV014336202 |9 2 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 131 |w (DE-604)BV024126459 |9 131 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009834664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009834664 |
Datensatz im Suchindex
_version_ | 1804129234784878592 |
---|---|
adam_text | CONTENTS I. QUOTIENTS BY ACTIONS OF GROUPS ANDRZEJ BIA*YNICKI-BIRULA 1
II. TORUS ACTIONS AND COHOMOLOGY JAMES B. CARRELL 83 III. THE ADJOINT
REPRESENTATION AND THE ADJOINT ACTION WILLIAM M. MCGOVERN 159 SUBJECT
INDEX 239 I. QUOTIENTS BY ACTIONS OF GROUPS ANDRZEJ BIA*YNICKI-BIRULA
CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 4 CHAPTER 2
TERMINOLOGY AND NOTATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 5 §2.1. SPACES, SCHEMES, VARIETIES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 5 §2.2. PREEQUIVALENCE
RELATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 5 §2.3. GROUPOIDS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 §2.4. GROUP
ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 8 CHAPTER 3 BASIC DEFINITIONS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CHAPTER 4 STANDARD EXAMPLES AND APPLICATIONS . . . . . . . . . . . . . .
. . . . . . . . . . 12 §4.1. PRINCIPAL BUNDLES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 §4.2.
PROJECTIVE SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 12 §4.3. QUOTIENTS BY FINITE GROUP
ACTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
§4.4. COSET VARIETIES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 14 §4.5. QUOTIENTS OF AFFINE
SPACES BY LINEAR ACTIONS OF GROUPS . . . . . . . . . . 16 §4.6. INDUCED
ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 16 CHAPTER 5 THE AFFINE CASE . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CHAPTER 6 MUMFORD*S G.I.T. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 18 §6.1. GENERAL CASE . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 19 §6.2. CASE OF A PROJECTIVE SPACE . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 20 2 ANDRZEJ BIA*YNICKI-BIRULA
§6.3. CASE OF A PROJECTIVE VARIETY . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 21 §6.4. HILBERT*MUMFORD CRITERIUM . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 §6.5. THE
CASE OF ACTIONS OF ANY LINEAR ALGEBRAIC GROUP . . . . . . . . . . . . .
22 CHAPTER 7 GOOD QUOTIENTS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 23 §7.1. GENERAL PROPERTIES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 23 §7.2. G -MAXIMAL SUBSETS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 25 §7.3. VARIATION OF
STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 27 CHAPTER 8 PROPER ACTIONS AND QUOTIENTS BY PROPER
ACTIONS . . . . . . . . . . . . . . 28 §8.1. QUOTIENTS BY CLOSED
EQUIVALENCE RELATIONS . . . . . . . . . . . . . . . . . . . . . 28 §8.2.
EXISTENCE OF QUOTIENTS BY PROPER GROUP ACTIONS . . . . . . . . . . . . .
. . . . 29 §8.3. EXISTENCE OF QUOTIENTS OF PROPER GROUPOIDS . . . . . .
. . . . . . . . . . . . . . . 30 §8.4. SESHADRI COVER . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 CHAPTER 9 STACKS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 31 CHAPTER 10 COMPLEX
ANALYTIC CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 37 §10.1.QUOTIENTS BY PROPER ACTIONS AND EQUIVALENCE
RELATIONS . . . . . . . . . . . 37 §10.2.STEIN AND GOOD QUOTIENTS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
§10.3.MOMENT MAPS. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 39 CHAPTER 11 GOOD QUOTIENTS BY
ACTIONS OF TORI . . . . . . . . . . . . . . . . . . . . . . . . . . 42
§11.1.QUOTIENTS BY ACTIONS OF ONE-DIMENSIONAL TORI . . . . . . . . . . .
. . . . . . . 42 §11.2.QUOTIENTS BY ACTIONS OF TORI OF ARBITRARY
DIMENSION . . . . . . . . . . . . . 47 §11.3.QUOTIENTS OF OPEN SUBSETS
OF PROJECTIVE AND AFFINE SPACES . . . . . . . . 51 §11.4.GOOD QUOTIENTS
OF TORIC VARIETIES BY ACTIONS OF TORI . . . . . . . . . . . . . 53
CHAPTER 12 HILBERT*MUMFORD TYPE THEOREMS . . . . . . . . . . . . . . . .
. . . . . . . . . . 54 CHAPTER 13 CHOW AND HILBERT QUOTIENTS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 56 CHAPTER 14
CATEGORICAL QUOTIENTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 57 §14.1.CATEGORICAL QUOTIENTS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
§14.2.QUOTIENT MORPHISMS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 59 CHAPTER 15 SECTIONS, SLICES AND
REDUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CHAPTER 16 LOCAL AND GLOBAL PROPERTIES OF QUOTIENTS. . . . . . . . . . .
. . . . . . . . . . 64 II. TORUS ACTIONS AND COHOMOLOGY JAMES B. CARRELL
CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 85 CHAPTER 2 SOME
COMMENTS ON T -VARIETIES . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 87 §2.1. PRELIMINARY DEFINITIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 87 §2.2. TORUS ACTIONS ON
VARIETIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 89 §2.3. TORIC VARIETIES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 93 §2.4. PROJECTIVE
TORUS ORBIT CLOSURES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 95 CHAPTER 3 TORUS ACTIONS IN LIE THEORY . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 96 §3.1. THE LIE ALGEBRA . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 96 §3.2. THE ROOT SYSTEM AND THE WEYL GROUP . . . . . . . . . .
. . . . . . . . . . . . . . . . 97 §3.3. NILPOTENT ORBIT CLOSURES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
§3.4. GENERALIZED FLAG VARIETIES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 102 CHAPTER 4 TORUS ACTIONS AND HOMOLOGY .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 §4.1. THE
BIA*YNICKI-BIRULA DECOMPOSITION . . . . . . . . . . . . . . . . . . . .
. . . . . . 109 §4.2. TORUS ACTIONS AND Z -HOMOLOGY . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 112 §4.3. GOOD DECOMPOSITIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 117 CHAPTER 5 TORUS ACTIONS AND COHOMOLOGY ALGEBRAS . . . . . . .
. . . . . . . . . . . . . 119 §5.1. THE BOTT RESIDUE FORMULA . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 §5.2.
COHOMOLOGY AND B -ACTIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 129 84 JAMES B. CARRELL CHAPTER 6 COHOMOLOGY OF
INVARIANT SUBVARIETIES . . . . . . . . . . . . . . . . . . . . . . . 133
§6.1. NON-ISOLATED FIXED POINTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 133 §6.2. COHOMOLOGY OF B -INVARIANT
SUBVARIETIES . . . . . . . . . . . . . . . . . . . . . . . 139 §6.3. T
-EQUIVARIANT COHOMOLOGY . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 144 §6.4. RATIONAL SMOOTHNESS AND POINCAR´ E DUALITY
. . . . . . . . . . . . . . . . . . . . . . 147 §6.5. EQUIVARIANT
MULTIPLICITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 151 REFERENCES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
154 III. THE ADJOINT REPRESENTATION AND THE ADJOINT ACTION WILLIAM M.
MCGOVERN CONTENTS CHAPTER 1 PRELIMINARIES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 §1.1.
STRUCTURE OF SEMISIMPLE LIE ALGEBRAS . . . . . . . . . . . . . . . . . .
. . . . . . . . 162 §1.2. CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS . .
. . . . . . . . . . . . . . . . . . . . 163 §1.3. REAL SEMISIMPLE LIE
ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
163 §1.4. SEMISIMPLE ALGEBRAIC GROUPS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 165 §1.5. PARABOLIC SUBALGEBRAS AND
SUBGROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . 166
CHAPTER 2 BASIC FACTS ABOUT ORBITS, CLASSES AND CENTRALIZERS . . . . . .
. . . . . . 167 §2.1. EXAMPLE: GENERAL AND SPECIAL LINEAR GROUPS . . . .
. . . . . . . . . . . . . . . 167 §2.2. EVENNESS OF DIMENSION IN GOOD
CHARACTERISTIC . . . . . . . . . . . . . . . . . . 169 §2.3. ORBITS AND
CENTRALIZERS OF SEMISIMPLE ELEMENTS . . . . . . . . . . . . . . . . .
170 §2.4. SEMISIMPLE ORBITS IN CLASSICAL LIE ALGEBRAS . . . . . . . . .
. . . . . . . . . . . 171 §2.5. SEMISIMPLE ORBITS AND THE ADJOINT
QUOTIENT . . . . . . . . . . . . . . . . . . . . 172 CHAPTER 3 NILPOTENT
ORBITS AND UNIPOTENT CLASSES: THE FINITENESS THEOREM . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 174 §3.1. NILPOTENT ORBITS
IN CLASSICAL LIE ALGEBRAS . . . . . . . . . . . . . . . . . . . . . .
174 §3.2. THE JACOBSON*MOROZOV THEOREM . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 176 §3.3. NILPOTENT ORBITS IN REAL CLASSICAL LIE
ALGEBRAS . . . . . . . . . . . . . . . . . . 178 §3.4. CONJUGACY
THEOREMS AND WEIGHTED DIAGRAMS . . . . . . . . . . . . . . . . . . . 180
160 WILLIAM M. MCGOVERN §3.5. CENTRALIZERS OF NILPOTENT ELEMENTS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 182 §3.6. FINITENESS
THEOREMS OF RICHARDSON AND LUSZTIG . . . . . . . . . . . . . . . . . 184
§3.7. THE FINITENESS THEOREM OVER R . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 185 CHAPTER 4 THE PRINCIPAL NILPOTENT ORBIT
AND REGULAR ELEMENTS . . . . . . . . . . . 187 §4.1. THE PRINCIPAL
NILPOTENT ORBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 188 §4.2. REGULAR ELEMENTS AND THE ADJOINT QUOTIENT . . . . .
. . . . . . . . . . . . . . . . 189 §4.3. RESULTS OF KOSTANT . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
190 CHAPTER 5 INDUCTION OF ORBITS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 192 §5.1. INDUCED ORBITS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 192 §5.2. CRITERION FOR AN ORBIT TO BE INDUCED . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 194 §5.3. INDUCED ORBITS IN
CLASSICAL LIE ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . 195
§5.4. APPLICATION: THE SUBREGULAR ORBIT . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 196 §5.5. SECOND APPLICATION: SHEETS IN
SEMISIMPLE LIE ALGEBRAS . . . . . . . . . . 197 §5.6. THIRD APPLICATION:
BALA*CARTER CLASSIFICATION OF NILPOTENT ORBITS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 §5.7.
APPENDIX: TABLES OF THE EXCEPTIONAL ORBITS . . . . . . . . . . . . . . .
. . . . . . 200 CHAPTER 6 CLOSURES OF ORBITS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 208 §6.1. THE
MINIMAL NILPOTENT ORBIT . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 208 §6.2. ORBIT CLOSURES IN CLASSICAL LIE ALGEBRAS . .
. . . . . . . . . . . . . . . . . . . . . . 208 §6.3. SPALTENSTEIN
DUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 210 §6.4. TABLES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
CHAPTER 7 THE NILPOTENT VARIETY AND THE FLAG VARIETY . . . . . . . . . .
. . . . . . . . . 215 §7.1. SPRINGER*S DESINGULARIZATION OF N . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 216 §7.2. CONNECTEDNESS
OF THE FIBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 217 §7.3. EQUIDIMENSIONALITY OF THE FIBERS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 217 §7.4. DIMENSIONS OF THE
FIBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 219 §7.5. ORBITAL VARIETIES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 220 §7.6. COMPONENTS
OF B X : THE SUBREGULAR CASE . . . . . . . . . . . . . . . . . . . . . .
. 221 §7.7. COMPONENTS OF B X : THE CLASSICAL CASE. . . . . . . . . . .
. . . . . . . . . . . . . . 222 CHAPTER 8 SPRINGER*S WEYL GROUP
REPRESENTATIONS . . . . . . . . . . . . . . . . . . . . . . 223 §8.1.
THE SPRINGER CORRESPONDENCE. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 224 §8.2. OTHER CONSTRUCTIONS OF THE SPRINGER
REPRESENTATIONS. . . . . . . . . . . . . . 225 §8.3. COMPUTATION OF THE
SPRINGER REPRESENTATIONS . . . . . . . . . . . . . . . . . . . . 226
III. THE ADJOINT REPRESENTATION AND THE ADJOINT ACTION 161 CHAPTER 9
RECENT WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 227 §9.1. REGULAR FUNCTIONS ON NILPOTENT
ORBITS . . . . . . . . . . . . . . . . . . . . . . . . . 228 §9.2.
SOMMERS*S COMPUTATION OF FUNDAMENTAL GROUPS . . . . . . . . . . . . . .
. . 229 §9.3. SMALL REPRESENTATIONS AND NILPOTENT ORBITS . . . . . . . .
. . . . . . . . . . . . . 230 §9.4. ORBITAL VARIETIES IN CLASSICAL LIE
ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . 231 §9.5. NILPOTENT
ORBITS IN DOUBLED LIE ALGEBRAS . . . . . . . . . . . . . . . . . . . . .
. . 232 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 PREFACE
THE PURPOSE OF THIS ARTICLE IS TO STUDY IN DETAIL THE ACTIONS OF A
SEMISIMPLE LIE OR ALGEBRAIC GROUP ON ITS LIE ALGEBRA BY THE ADJOINT
REPRESENTATION AND ON ITSELF BY THE ADJOINT ACTION. WE WILL FOCUS
PRIMARILY ON ORBITS THROUGH NILPOTENT ELEMENTS IN THE LIE ALGEBRA; THESE
ARE CALLED NILPOTENT ORBITS FOR SHORT. MANY DEEP RESULTS ABOUT SUCH
ORBITS HAVE BEEN OBTAINED IN THE LAST THIRTY-FIVE YEARS; WE WILL COLLECT
SOME OF THE MOST SIGNIFICANT OF THESE THAT HAVE FOUND WIDE APPLICATION
TO REPRESENTATION THEORY. WE WILL PRIMARILY WORK IN THE SETTING OF A
SEMISIMPLE LIE ALGEBRA AND ITS ADJOINT GROUP OVER AN ALGEBRAICALLY
CLOSED FIELD OF CHARACTERISTIC ZERO, BUT WE WILL EXTEND MUCH OF WHAT WE
DO TO SEMISIMPLE LIE ALGEBRAS OVER THE REALS OR AN ALGEBRAICALLY CLOSED
FIELD OF PRIME CHARACTERISTIC, AND TO CONJUGACY CLASSES IN SEMISIMPLE
ALGEBRAIC GROUPS. WE WILL GIVE DETAILED PROOFS OF MANY RESULTS,
INCLUDING SOME WHICH ARE DIFFICULT TO FERRET OUT OF THE LITERATURE.
OTHER RESULTS WILL BE SUMMARIZED WITH REASONABLY COMPLETE REFERENCES.
THE TREATMENT IS A MORE COMPREHENSIVE VERSION OF THAT IN [CM93]; THERE
IS ALSO SOME OVERLAP WITH HUMPHREYS*S BOOK [HU95]. IN THE LAST CHAPTER
WE SUMMARIZE SOME OF THE MOST RECENT WORK BEING DONE IN THIS TOPIC AND
INDICATE SOME DIRECTIONS OF CURRENT RESEARCH. THE READER IS EXPECTED TO
BE FAMILIAR WITH THE STRUCTURE AND CLASSIFICATION OF COMPLEX SEMISIMPLE
LIE ALGEBRAS, TOGETHER WITH THE BASIC DEFINITIONS AND THEOREMS TYPICALLY
FOUND IN A FIRST COURSE ON THAT SUBJECT. WE WILL ALSO INVOKE THE
CORRESPONDING FACTS ABOUT REAL LIE GROUPS AND ALGEBRAS AND ALGEBRAIC
GROUPS FROM TIME TO TIME. FOR CONVENIENCE THIS BACKGROUND MATERIAL IS
SUMMARIZED IN CHAPTER 1. THE CLASSICAL MATRIX GROUPS AND ALGEBRAS WILL
SERVE AS A READY SOURCE OF EXAMPLES; WE WILL OFTEN BE ABLE TO DERIVE
VERY EXPLICIT RESULTS FOR SUCH GROUPS AND ALGEBRAS USING NOTHING MORE
THAN LINEAR ALGEBRA.
|
any_adam_object | 1 |
author | Białynicki-Birula, Andrzej Carrell, James B. McGovern, William M. 1959- Białynicki-Birula, Andrzej Carrell, James B. |
author_GND | (DE-588)124769179 |
author_facet | Białynicki-Birula, Andrzej Carrell, James B. McGovern, William M. 1959- Białynicki-Birula, Andrzej Carrell, James B. |
author_role | aut aut aut aut aut |
author_sort | Białynicki-Birula, Andrzej |
author_variant | a b b abb j b c jb jbc w m m wm wmm a b b abb j b c jb jbc |
building | Verbundindex |
bvnumber | BV014336247 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.5 |
callnumber-search | QA251.5 |
callnumber-sort | QA 3251.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 |
classification_tum | MAT 140f |
ctrlnum | (OCoLC)49937446 (DE-599)BVBBV014336247 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02781nam a2200649 cb4500</leader><controlfield tag="001">BV014336247</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080611 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020607s2002 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540432116</subfield><subfield code="9">3-540-43211-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49937446</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014336247</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Białynicki-Birula, Andrzej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic quotients</subfield><subfield code="c">A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Nebent.: Quotients by actions of groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">242 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">131</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enth. u.a.: Torus actions and cohomology / J. B. Carrell</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria geométrica de invariantes</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torsion, Théorie de la (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quotient rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torsion theory (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenoperation</subfield><subfield code="0">(DE-588)4158467-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Gruppe</subfield><subfield code="0">(DE-588)4001164-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Gruppe</subfield><subfield code="0">(DE-588)4001164-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppenoperation</subfield><subfield code="0">(DE-588)4158467-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carrell, James B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGovern, William M.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124769179</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Białynicki-Birula, Andrzej</subfield><subfield code="4">aut</subfield><subfield code="t">Quotients by actions of groups</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Carrell, James B.</subfield><subfield code="4">aut</subfield><subfield code="t">Torus actions and cohomology</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Invariant theory and algebraic transformation groups</subfield><subfield code="t">Encyclopaedia of mathematical sciences</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV014336202</subfield><subfield code="9">2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">131</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">131</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009834664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009834664</subfield></datafield></record></collection> |
id | DE-604.BV014336247 |
illustrated | Illustrated |
indexdate | 2024-07-09T19:01:54Z |
institution | BVB |
isbn | 3540432116 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009834664 |
oclc_num | 49937446 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-20 DE-634 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-20 DE-634 DE-188 |
physical | 242 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups |
spelling | Białynicki-Birula, Andrzej Verfasser aut Algebraic quotients A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern Nebent.: Quotients by actions of groups Berlin [u.a.] Springer 2002 242 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Encyclopaedia of mathematical sciences 131 Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups 2 Enth. u.a.: Torus actions and cohomology / J. B. Carrell Geometria algébrica larpcal Homologie Lie, Algèbres de Lie, Groupes de Teoria geométrica de invariantes larpcal Torsion, Théorie de la (Algèbre) Homology theory Lie algebras Lie groups Quotient rings Torsion theory (Algebra) Geometrische Invariantentheorie (DE-588)4156712-2 gnd rswk-swf Gruppenoperation (DE-588)4158467-3 gnd rswk-swf Algebraische Gruppe (DE-588)4001164-1 gnd rswk-swf Algebraische Gruppe (DE-588)4001164-1 s Gruppenoperation (DE-588)4158467-3 s Geometrische Invariantentheorie (DE-588)4156712-2 s DE-604 Carrell, James B. Verfasser aut McGovern, William M. 1959- Verfasser (DE-588)124769179 aut Białynicki-Birula, Andrzej aut Quotients by actions of groups Carrell, James B. aut Torus actions and cohomology Invariant theory and algebraic transformation groups Encyclopaedia of mathematical sciences 2 (DE-604)BV014336202 2 Encyclopaedia of mathematical sciences 131 (DE-604)BV024126459 131 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009834664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Białynicki-Birula, Andrzej Carrell, James B. McGovern, William M. 1959- Białynicki-Birula, Andrzej Carrell, James B. Algebraic quotients Encyclopaedia of mathematical sciences Geometria algébrica larpcal Homologie Lie, Algèbres de Lie, Groupes de Teoria geométrica de invariantes larpcal Torsion, Théorie de la (Algèbre) Homology theory Lie algebras Lie groups Quotient rings Torsion theory (Algebra) Geometrische Invariantentheorie (DE-588)4156712-2 gnd Gruppenoperation (DE-588)4158467-3 gnd Algebraische Gruppe (DE-588)4001164-1 gnd |
subject_GND | (DE-588)4156712-2 (DE-588)4158467-3 (DE-588)4001164-1 |
title | Algebraic quotients |
title_alt | Nebent.: Quotients by actions of groups Quotients by actions of groups Torus actions and cohomology |
title_auth | Algebraic quotients |
title_exact_search | Algebraic quotients |
title_full | Algebraic quotients A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern |
title_fullStr | Algebraic quotients A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern |
title_full_unstemmed | Algebraic quotients A. Białynicki-Birula ; J. B. Carrell ; W. M. McGovern |
title_short | Algebraic quotients |
title_sort | algebraic quotients |
topic | Geometria algébrica larpcal Homologie Lie, Algèbres de Lie, Groupes de Teoria geométrica de invariantes larpcal Torsion, Théorie de la (Algèbre) Homology theory Lie algebras Lie groups Quotient rings Torsion theory (Algebra) Geometrische Invariantentheorie (DE-588)4156712-2 gnd Gruppenoperation (DE-588)4158467-3 gnd Algebraische Gruppe (DE-588)4001164-1 gnd |
topic_facet | Geometria algébrica Homologie Lie, Algèbres de Lie, Groupes de Teoria geométrica de invariantes Torsion, Théorie de la (Algèbre) Homology theory Lie algebras Lie groups Quotient rings Torsion theory (Algebra) Geometrische Invariantentheorie Gruppenoperation Algebraische Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009834664&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014336202 (DE-604)BV024126459 |
work_keys_str_mv | AT białynickibirulaandrzej algebraicquotients AT carrelljamesb algebraicquotients AT mcgovernwilliamm algebraicquotients AT białynickibirulaandrzej nebentquotientsbyactionsofgroups AT carrelljamesb nebentquotientsbyactionsofgroups AT mcgovernwilliamm nebentquotientsbyactionsofgroups |