Finite Möbius groups, minimal immersions of spheres, and moduli:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2002
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 299 - 304 |
Beschreibung: | XVI, 317 S. Ill., graph. Darst. : 24 cm |
ISBN: | 038795323X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV014161020 | ||
003 | DE-604 | ||
005 | 20050720 | ||
007 | t | ||
008 | 020219s2002 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 963590685 |2 DE-101 | |
020 | |a 038795323X |9 0-387-95323-X | ||
035 | |a (OCoLC)47100725 | ||
035 | |a (DE-599)BVBBV014161020 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-19 |a DE-384 |a DE-91G |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA609 | |
082 | 0 | |a 516.3/6 |2 21 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 49Q05 |2 msc | ||
084 | |a MAT 162f |2 stub | ||
084 | |a MAT 586f |2 stub | ||
084 | |a MAT 533f |2 stub | ||
084 | |a 58E20 |2 msc | ||
084 | |a 53C42 |2 msc | ||
084 | |a MAT 498f |2 stub | ||
100 | 1 | |a Tóth, Gábor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Möbius groups, minimal immersions of spheres, and moduli |c Gabor Toth |
264 | 1 | |a New York [u.a.] |b Springer |c 2002 | |
300 | |a XVI, 317 S. |b Ill., graph. Darst. : 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Literaturverz. S. 299 - 304 | ||
650 | 4 | |a Géométrie conforme | |
650 | 4 | |a Immersions (Mathématiques) | |
650 | 4 | |a Modules, Théorie des | |
650 | 4 | |a Conformal geometry | |
650 | 4 | |a Immersions (Mathematics) | |
650 | 4 | |a Moduli theory | |
650 | 0 | 7 | |a Sphäre |0 (DE-588)4182221-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimale Immersion |0 (DE-588)4120739-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sphäre |0 (DE-588)4182221-3 |D s |
689 | 0 | 1 | |a Minimale Immersion |0 (DE-588)4120739-7 |D s |
689 | 0 | 2 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |D s |
689 | 0 | 3 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009706242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009706242 |
Datensatz im Suchindex
_version_ | 1804129037650493440 |
---|---|
adam_text | GABOR TOTH FINITE MOBIUS GROUPS, MINIMAL IMMERSIONS OF SPHERES, AND
MODULI SPRINGER CONTENTS INTRODUCTION AND SYNOPSIS VII 1 FINITE MOBIUS
GROUPS 1 1.1 PLATONIC SOLIDS AND FINITE ROTATION GROUPS 1 1.2 ROTATIONS
AND MOBIUS TRANSFORMATIONS 22 1.3 INVARIANT FORMS 38 1.4 MINIMAL
IMMERSIONS OF THE 3-SPHERE INTO SPHERES . . . . 50 1.5 MINIMAL
IMBEDDINGS OF SPHERICAL SPACE FORMS INTO SPHERES 59 1.6 ADDITIONAL
TOPIC: KLEIN S THEORY OF THE ICOSAHEDRON . . . 66 2 MODULI FOR EIGENMAPS
95 2.1 SPHERICAL HARMONICS 95 2.2 GENERALITIES ON EIGENMAPS 107 2.3
MODULI 110 2.4 RAISING AND LOWERING THE DEGREE 129 2.5 EXACT DIMENSION
OF THE MODULI C P 132 2.6 EQUIVARIANT IMBEDDING OF MODULI 137 2.7
QUADRATIC EIGENMAPS IN DOMAIN DIMENSION THREE . . . 140 2.8 RAISING THE
DOMAIN DIMENSION 149 2.9 ADDITIONAL TOPIC: QUADRATIC EIGENMAPS 154 3
MODULI FOR SPHERICAL MINIMAL IMMERSIONS 171 3.1 CONFORMAL EIGENMAPS AND
MODULI 171 3.2 CONFORMAL FIELDS AND EIGENMAPS 180 XVI CONTENTS 3.3
CONFORMAL FIELDS AND RAISING AND LOWERING THE DEGREE . 188 3.4 EXACT
DIMENSION OF THE MODULI M P 193 3.5 ISOTROPIC MINIMAL IMMERSIONS 195 3.6
QUARTIC MINIMAL IMMERSIONS IN DOMAIN DIMENSION THREE 206 3.7 ADDITIONAL
TOPIC: THE INVERSE OF * 232 4 LOWER BOUNDS ON THE RANGE OF SPHERICAL
MINIMAL IMMERSIONS 241 4.1 INFINITESIMAL ROTATIONS OF EIGENMAPS 241 4.2
INFINITESIMAL ROTATIONS AND THE CASIMIR OPERATOR . . . . 247 4.3
INFINITESIMAL ROTATIONS AND DEGREE-RAISING 256 4.4 LOWER BOUNDS FOR THE
RANGE DIMENSION, PART I 259 4.5 LOWER BOUNDS FOR THE RANGE DIMENSION,
PART II 267 4.6 ADDITIONAL TOPIC: OPERATORS 275 APPENDIX 1. CONVEX SETS
283 APPENDIX 2. HARMONIC MAPS AND MINIMAL IMMERSIONS 285 APPENDIX 3.
SOME FACTS FROM THE REPRESENTATION THEORY OF THE SPECIAL ORTHOGONAL
GROUP 291 BIBLIOGRAPHY 299 GLOSSARY OF NOTATIONS 305 INDEX 313
|
any_adam_object | 1 |
author | Tóth, Gábor |
author_facet | Tóth, Gábor |
author_role | aut |
author_sort | Tóth, Gábor |
author_variant | g t gt |
building | Verbundindex |
bvnumber | BV014161020 |
callnumber-first | Q - Science |
callnumber-label | QA609 |
callnumber-raw | QA609 |
callnumber-search | QA609 |
callnumber-sort | QA 3609 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 SK 370 |
classification_tum | MAT 162f MAT 586f MAT 533f MAT 498f |
ctrlnum | (OCoLC)47100725 (DE-599)BVBBV014161020 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02248nam a2200625 c 4500</leader><controlfield tag="001">BV014161020</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050720 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020219s2002 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">963590685</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038795323X</subfield><subfield code="9">0-387-95323-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47100725</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014161020</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA609</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49Q05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 162f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 586f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 533f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58E20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C42</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 498f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tóth, Gábor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Möbius groups, minimal immersions of spheres, and moduli</subfield><subfield code="c">Gabor Toth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 317 S.</subfield><subfield code="b">Ill., graph. Darst. : 24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 299 - 304</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie conforme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immersions (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immersions (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sphäre</subfield><subfield code="0">(DE-588)4182221-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimale Immersion</subfield><subfield code="0">(DE-588)4120739-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sphäre</subfield><subfield code="0">(DE-588)4182221-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Minimale Immersion</subfield><subfield code="0">(DE-588)4120739-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009706242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009706242</subfield></datafield></record></collection> |
id | DE-604.BV014161020 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:58:46Z |
institution | BVB |
isbn | 038795323X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009706242 |
oclc_num | 47100725 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-384 DE-91G DE-BY-TUM DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-384 DE-91G DE-BY-TUM DE-634 DE-83 DE-11 DE-188 |
physical | XVI, 317 S. Ill., graph. Darst. : 24 cm |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Tóth, Gábor Verfasser aut Finite Möbius groups, minimal immersions of spheres, and moduli Gabor Toth New York [u.a.] Springer 2002 XVI, 317 S. Ill., graph. Darst. : 24 cm txt rdacontent n rdamedia nc rdacarrier Universitext Literaturverz. S. 299 - 304 Géométrie conforme Immersions (Mathématiques) Modules, Théorie des Conformal geometry Immersions (Mathematics) Moduli theory Sphäre (DE-588)4182221-3 gnd rswk-swf Harmonische Abbildung (DE-588)4023452-6 gnd rswk-swf Minimale Immersion (DE-588)4120739-7 gnd rswk-swf Modulraum (DE-588)4183462-8 gnd rswk-swf Sphäre (DE-588)4182221-3 s Minimale Immersion (DE-588)4120739-7 s Harmonische Abbildung (DE-588)4023452-6 s Modulraum (DE-588)4183462-8 s DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009706242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tóth, Gábor Finite Möbius groups, minimal immersions of spheres, and moduli Géométrie conforme Immersions (Mathématiques) Modules, Théorie des Conformal geometry Immersions (Mathematics) Moduli theory Sphäre (DE-588)4182221-3 gnd Harmonische Abbildung (DE-588)4023452-6 gnd Minimale Immersion (DE-588)4120739-7 gnd Modulraum (DE-588)4183462-8 gnd |
subject_GND | (DE-588)4182221-3 (DE-588)4023452-6 (DE-588)4120739-7 (DE-588)4183462-8 |
title | Finite Möbius groups, minimal immersions of spheres, and moduli |
title_auth | Finite Möbius groups, minimal immersions of spheres, and moduli |
title_exact_search | Finite Möbius groups, minimal immersions of spheres, and moduli |
title_full | Finite Möbius groups, minimal immersions of spheres, and moduli Gabor Toth |
title_fullStr | Finite Möbius groups, minimal immersions of spheres, and moduli Gabor Toth |
title_full_unstemmed | Finite Möbius groups, minimal immersions of spheres, and moduli Gabor Toth |
title_short | Finite Möbius groups, minimal immersions of spheres, and moduli |
title_sort | finite mobius groups minimal immersions of spheres and moduli |
topic | Géométrie conforme Immersions (Mathématiques) Modules, Théorie des Conformal geometry Immersions (Mathematics) Moduli theory Sphäre (DE-588)4182221-3 gnd Harmonische Abbildung (DE-588)4023452-6 gnd Minimale Immersion (DE-588)4120739-7 gnd Modulraum (DE-588)4183462-8 gnd |
topic_facet | Géométrie conforme Immersions (Mathématiques) Modules, Théorie des Conformal geometry Immersions (Mathematics) Moduli theory Sphäre Harmonische Abbildung Minimale Immersion Modulraum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009706242&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tothgabor finitemobiusgroupsminimalimmersionsofspheresandmoduli |