Petri net algebra:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Monographs in theoretical computer science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 378 S. graph. Darst. |
ISBN: | 3540673989 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV013546841 | ||
003 | DE-604 | ||
005 | 20200304 | ||
007 | t | ||
008 | 010116s2001 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 960436944 |2 DE-101 | |
020 | |a 3540673989 |9 3-540-67398-9 | ||
035 | |a (OCoLC)248435539 | ||
035 | |a (DE-599)BVBBV013546841 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-824 |a DE-384 |a DE-739 |a DE-29T |a DE-473 |a DE-91G |a DE-634 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA76.58 | |
082 | 0 | |a 004/.35 |2 21 | |
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 132 |0 (DE-625)143589: |2 rvk | ||
084 | |a DAT 516d |2 stub | ||
100 | 1 | |a Best, Eike |d 1951- |e Verfasser |0 (DE-588)1021355593 |4 aut | |
245 | 1 | 0 | |a Petri net algebra |c Eike Best ; Raymond Devillers ; Maciej Koutny |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XI, 378 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Monographs in theoretical computer science | |
650 | 7 | |a Ciência da computação |2 larpcal | |
650 | 4 | |a Informatique - Mathématiques | |
650 | 4 | |a Parallélisme (Informatique) | |
650 | 7 | |a Petri netwerken |2 gtt | |
650 | 7 | |a Redes de petri |2 larpcal | |
650 | 7 | |a Álgebra |2 larpcal | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Computer science |x Mathematics | |
650 | 4 | |a Parallel processing (Electronic computers) | |
650 | 4 | |a Petri nets | |
650 | 0 | 7 | |a Prozessalgebra |0 (DE-588)4283920-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Petri-Netz |0 (DE-588)4045388-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Petri-Netz |0 (DE-588)4045388-1 |D s |
689 | 0 | 1 | |a Prozessalgebra |0 (DE-588)4283920-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Devillers, Raymond |e Verfasser |4 aut | |
700 | 1 | |a Koutny, Maciej |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009250590&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805083482390528000 |
---|---|
adam_text |
EIKE BEST RAYMOND DEVILLERS MACIEJ KOUTNY PETRI NET ALGEBRA WITH 111
FIGURES SPRINGER CONTENTS 1. INTRODUCTION 1 2. THE PETRI BOX CALCULUS 7
2.1 AN INFORMAL INTRODUCTION TO CCS 8 2.2 AN INFORMAL INTRODUCTION TO
PETRI NETS 9 2.3 THE STRUCTURE AND BEHAVIOUR OF PBC EXPRESSIONS 11 2.4
SEQUENTIAL COMPOSITION 14 2.5 SYNCHRONISATION 15 2.6 SYNCHRONISATION AND
PARALLEL COMPOSITION 21 2.7 OTHER PBC OPERATORS 24 2.8 MODELLING A
CONCURRENT PROGRAMMING LANGUAGE 25 2.9 LITERATURE AND BACKGROUND 28 3.
SYNTAX AND OPERATIONAL SEMANTICS 29 3.1 STANDARD PBC SYNTAX 29 3.2
STRUCTURED OPERATIONAL SEMANTICS 33 3.2.1 THE BASIC SETUP 35 3.2.2
EQUIVALENCE NOTIONS 37 3.2.3 ELEMENTARY ACTIONS 41 3.2.4 PARALLEL
COMPOSITION 42 3.2.5 CHOICE COMPOSITION 45 3.2.6 SEQUENTIAL COMPOSITION
46 3.2.7 SYNCHRONISATION 47 3.2.8 STANDARD PBC SYNCHRONISATION 47 3.2.9
AUTO-SYNCHRONISATION AND MULTILINK-SYNCHRONISATION . . 50 3.2.10
STEP-SYNCHRONISATION 52 3.2.11 BASIC RELABELLING 53 3.2.12 RESTRICTION
'. 54 3.2.13 SCOPING 55 3.2.14 ITERATION 58 3.2.15 RECURSION 59 3.3
EXTENSIONS 62 3.3.1 GENERALISED ITERATIONS 62 3.3.2 DATA VARIABLES 64
VIII CONTENTS 3.3.3 GENERALISED CONTROL FLOW OPERATORS 66 3.3.4
GENERALISED COMMUNICATION INTERFACE OPERATORS 67 3.4 EXTENDED PBC SYNTAX
69 3.5 EXAMPLES OF TRANSITION SYSTEMS 69 3.6 LITERATURE AND BACKGROUND
71 4. PETRI NET SEMANTICS 73 4.1 COMPOSITIONALITY AND NETS 73 4.2
LABELLED NETS AND BOXES 75 4.2.1 AN EXAMPLE 75 4.2.2 ACTIONS AND
RELABELLINGS 76 4.2.3 LABELLED NETS 77 4.2.4 EQUIVALENCE NOTIONS 82
4.2.5 BOXES 86 4.3 NET REFINEMENT 90 4.3.1 OPERATOR BOXES - 90 4.3.2
INTUITION BEHIND NET REFINEMENT 92 4.3.3 PLACE AND TRANSITION NAMES 95
4.3.4 FORMAL DEFINITION OF NET REFINEMENT 97 4.3.5 REMARKS ON NET
REFINEMENT 99 4.3.6 PROPERTIES 101 4.3.7 DISCUSSION 103 4.4 PETRI NET
SEMANTICS OF PBC 104 4.4.1 ELEMENTARY ACTIONS 106 4.4.2 PARALLEL
COMPOSITION 106 4.4.3 CHOICE COMPOSITION 107 4.4.4 SEQUENTIAL
COMPOSITION 109 4.4.5 BASIC RELABELLING 110 4.4.6 SYNCHRONISATION 110
4.4.7 RESTRICTION 119 4.4.8 SCOPING 120 4.4.9 ITERATION 120 4.4.10 DATA
VARIABLES 123 4.4.11 GENERALISED CONTROL FLOW OPERATORS 124 4.4.12
GENERALISED COMMUNICATION INTERFACE OPERATORS 126 4.4.13 GENERALISED
ITERATIONS 127 4.5 REFINED OPERATORS 129 4.6 LITERATURE AND BACKGROUND
132 5. ADDING RECURSION 133 5.1 INCLUSION ORDER ON LABELLED NETS 133 5.2
SOLVING RECURSIVE EQUATIONS 135 5.2.1 USING FIXPOINTS TO SOLVE RECURSIVE
EQUATIONS 137 5.2.2 PLACES AND TRANSITIONS IN NET SOLUTIONS 140 5.2.3 AN
EXAMPLE OF THE LIMIT CONSTRUCTION 144 CONTENTS IX 5.2.4 DERIVING SEED
BOXES 145 5.2.5 A CLOSED FORM OF THE MAXIMAL SOLUTION 151 5.2.6 MINIMAL
SOLUTIONS 153 5.3 FINITARY EQUATIONS AND FINITE OPERATOR BOXES 157 5.3.1
FINITARY EQUATION 157 5.3.2 FINITE OPERATOR BOX 159 5.4 FURTHER EXAMPLES
161 5.4.1 UNBOUNDED PARALLEL COMPOSITION 161 5.4.2 REAR-UNGUARDEDNESS
162 5.4.3 CONCURRENCY WITHIN UNBOUNDED CHOICE 164 5.4.4 EXTREME
UNGUARDEDNESS 166 5.4.5 (NON)USE OF EMPTY NETS IN THE LIMIT CONSTRUCTION
. . . 167 5.5 SOLVING SYSTEMS OF RECURSIVE EQUATIONS 167 5.5.1
APPROXIMATIONS, EXISTENCE, AND UNIQUENESS 168 5.5.2 A CLOSED FORM OF THE
MAXIMAL SOLUTION 169 5.5.3 GUARDED SYSTEMS 171 5.6 LITERATURE AND
BACKGROUND 172 6. S-INVARIANTS 173 6.1 S-INVARIANTS, S-COMPONENTS, AND
S-AGGREGATES 174 6.1.1 S-INVARIANTS 176 6.1.2 S-COMPONENTS 181 6.1.3
S-AGGREGATES 182 6.2 THE SYNTHESIS PROBLEM FOR NET REFINEMENT 183 6.2.1
COMPOSING S-INVARIANTS 185 6.2.2 MULTIPLICATIVE DISTRIBUTION FUNCTIONS
190 6.2.3 EX-BINARY S-INVARIANTS 193 6.2.4 RATIONAL GROUPINGS 195 6.3
THE SYNTHESIS PROBLEM FOR RECURSIVE SYSTEMS 200 6.3.1 NAME TREES OF NETS
IN THE MAXIMAL SOLUTION 201 6.3.2 COMPOSING S-INVARIANTS FOR RECURSIVE
BOXES 202 6.3.3 COVERABILITY RESULTS 209 6.4 FINITE PRECEDENCE
PROPERTIES 216 6.4.1 PROCESS SEMANTICS 218 6.4.2 FINITE PRECEDENCE OF
EVENTS 222 6.4.3 FINITENESS OF COMPLETE PROCESSES 225 6.5 LITERATURE AND
BACKGROUND 226 7. THE BOX ALGEBRA 227 7.1 SOS-OPERATOR BOXES 227 7.1.1 A
RUNNING EXAMPLE 232 7.1.2 PROPERTIES OF FACTORISATIONS 232 7.1.3 THE
DOMAIN OF APPLICATION OF AN SOS-OPERATOR BOX . . 234 7.1.4 STATIC
PROPERTIES OF REFINEMENTS 235 7.1.5 MARKINGS OF NETS 239 X CONTENTS 7.2
STRUCTURED OPERATIONAL SEMANTICS OF COMPOSITE BOXES 241 7.2.1 SOUNDNESS
. 243 7.2.2 SIMILARITY RELATION ON TUPLES OF BOXES 245 7.2.3
COMPLETENESS 248 7.2.4 SOLUTIONS OF RECURSIVE SYSTEMS 253 7.2.5
BEHAVIOURAL RESTRICTIONS 255 7.3 A PROCESS ALGEBRA AND ITS SEMANTICS 259
7.3.1 A RUNNING EXAMPLE: THE DIY ALGEBRA 262 7.3.2 INFINITE OPERATORS
264 7.3.3 DENOTATIONAL SEMANTICS 267 7.3.4 STRUCTURAL SIMILARITY
RELATION ON EXPRESSIONS 270 7.3.5 TRANSITION-BASED OPERATIONAL SEMANTICS
279 7.3.6 CONSISTENCY OF THE TWO SEMANTICS 286 7.3.7 LABEL-BASED
OPERATIONAL SEMANTICS 287 7.3.8 PARTIAL ORDER SEMANTICS OF BOX
EXPRESSIONS 290 7.4 LITERATURE AND BACKGROUND 294 8. PBC AND OTHER
PROCESS ALGEBRAS 295 8.1 (GENERALISED) PBC IS A BOX ALGEBRA 295 8.1.1
PBC WITHOUT LOOPS 295 8.1.2 SAFE TRANSLATION OF THE TERNARY PBC
ITERATION 299 8.1.3 PBC WITH GENERALISED LOOPS 306 8.2 OTHER PROCESS
ALGEBRAS 308 8.2.1 CCS 310 8.2.2 TCSP 311 8.2.3 COSY 311 8.3 LITERATURE
AND BACKGROUND 312 9. A CONCURRENT PROGRAMMING LANGUAGE 313 9.1 SYNTAX
OF RAZOR 313 9.1.1 PROGRAMS AND BLOCKS 315 9.1.2 DECLARATIONS 315 9.1.3
COMMANDS AND ACTIONS 316 9.1.4 GUARDED COMMANDS 316 9.1.5 EXPRESSIONS
AND OPERATORS 317 9.1.6 SYNTACTIC VARIATIONS 317 9.2 SEMANTICS OF RAZOR
318 9.2.1 PROGRAMS, BLOCKS, AND DECLARATIONS 319 9.2.2 BASIC CHANNEL
PROCESSES 321 9.2.3 COMMAND CONNECTIVES 324 9.2.4 ACTIONS AND GUARDED
COMMANDS 325 9.3 THREE RAZOR PROGRAMS 329 9.4 ADDING RECURSIVE
PROCEDURES 332 9.5 SOME CONSEQUENCES OF THE THEORY 336 CONTENTS XI 9.6
PROOFS OF DISTRIBUTED ALGORITHMS 340 9.6.1 A FINAL SET OF
PETRI-NET-RELATED DEFINITIONS 340 9.6.2 PETERSON'S MUTUAL EXCLUSION
ALGORITHM 342 9.6.3 DEKKER'S AND MORRIS'S MUTUAL EXCLUSION ALGORITHMS .
. 346 9.7 LITERATURE AND BACKGROUND 347 10. CONCLUSION 34 9 APPENDIX:
SOLUTIONS OF SELECTED EXERCISES 351 REFERENCES 362 INDEX 369 |
any_adam_object | 1 |
author | Best, Eike 1951- Devillers, Raymond Koutny, Maciej |
author_GND | (DE-588)1021355593 |
author_facet | Best, Eike 1951- Devillers, Raymond Koutny, Maciej |
author_role | aut aut aut |
author_sort | Best, Eike 1951- |
author_variant | e b eb r d rd m k mk |
building | Verbundindex |
bvnumber | BV013546841 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.58 |
callnumber-search | QA76.58 |
callnumber-sort | QA 276.58 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 130 ST 132 |
classification_tum | DAT 516d |
ctrlnum | (OCoLC)248435539 (DE-599)BVBBV013546841 |
dewey-full | 004/.35 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004/.35 |
dewey-search | 004/.35 |
dewey-sort | 14 235 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV013546841</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200304</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010116s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960436944</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540673989</subfield><subfield code="9">3-540-67398-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248435539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013546841</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.58</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004/.35</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 132</subfield><subfield code="0">(DE-625)143589:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 516d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Best, Eike</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1021355593</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Petri net algebra</subfield><subfield code="c">Eike Best ; Raymond Devillers ; Maciej Koutny</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 378 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in theoretical computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ciência da computação</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallélisme (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Petri netwerken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Redes de petri</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel processing (Electronic computers)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Petri nets</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessalgebra</subfield><subfield code="0">(DE-588)4283920-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Petri-Netz</subfield><subfield code="0">(DE-588)4045388-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Petri-Netz</subfield><subfield code="0">(DE-588)4045388-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prozessalgebra</subfield><subfield code="0">(DE-588)4283920-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devillers, Raymond</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutny, Maciej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009250590&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV013546841 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:49:15Z |
institution | BVB |
isbn | 3540673989 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009250590 |
oclc_num | 248435539 |
open_access_boolean | |
owner | DE-824 DE-384 DE-739 DE-29T DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-634 DE-83 DE-11 |
owner_facet | DE-824 DE-384 DE-739 DE-29T DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-634 DE-83 DE-11 |
physical | XI, 378 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series2 | Monographs in theoretical computer science |
spelling | Best, Eike 1951- Verfasser (DE-588)1021355593 aut Petri net algebra Eike Best ; Raymond Devillers ; Maciej Koutny Berlin [u.a.] Springer 2001 XI, 378 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Monographs in theoretical computer science Ciência da computação larpcal Informatique - Mathématiques Parallélisme (Informatique) Petri netwerken gtt Redes de petri larpcal Álgebra larpcal Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) Petri nets Prozessalgebra (DE-588)4283920-8 gnd rswk-swf Petri-Netz (DE-588)4045388-1 gnd rswk-swf Petri-Netz (DE-588)4045388-1 s Prozessalgebra (DE-588)4283920-8 s DE-604 Devillers, Raymond Verfasser aut Koutny, Maciej Verfasser aut HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009250590&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Best, Eike 1951- Devillers, Raymond Koutny, Maciej Petri net algebra Ciência da computação larpcal Informatique - Mathématiques Parallélisme (Informatique) Petri netwerken gtt Redes de petri larpcal Álgebra larpcal Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) Petri nets Prozessalgebra (DE-588)4283920-8 gnd Petri-Netz (DE-588)4045388-1 gnd |
subject_GND | (DE-588)4283920-8 (DE-588)4045388-1 |
title | Petri net algebra |
title_auth | Petri net algebra |
title_exact_search | Petri net algebra |
title_full | Petri net algebra Eike Best ; Raymond Devillers ; Maciej Koutny |
title_fullStr | Petri net algebra Eike Best ; Raymond Devillers ; Maciej Koutny |
title_full_unstemmed | Petri net algebra Eike Best ; Raymond Devillers ; Maciej Koutny |
title_short | Petri net algebra |
title_sort | petri net algebra |
topic | Ciência da computação larpcal Informatique - Mathématiques Parallélisme (Informatique) Petri netwerken gtt Redes de petri larpcal Álgebra larpcal Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) Petri nets Prozessalgebra (DE-588)4283920-8 gnd Petri-Netz (DE-588)4045388-1 gnd |
topic_facet | Ciência da computação Informatique - Mathématiques Parallélisme (Informatique) Petri netwerken Redes de petri Álgebra Informatik Mathematik Computer science Mathematics Parallel processing (Electronic computers) Petri nets Prozessalgebra Petri-Netz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009250590&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT besteike petrinetalgebra AT devillersraymond petrinetalgebra AT koutnymaciej petrinetalgebra |