Electron transfer in chemistry: 4 Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
Wiley-VCH
2001
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XLVII, 804 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV013463671 | ||
003 | DE-604 | ||
005 | 20021121 | ||
007 | t | ||
008 | 001129s2001 ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)48467533 | ||
035 | |a (DE-599)BVBBV013463671 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 |a DE-384 |a DE-20 |a DE-19 |a DE-355 |a DE-11 | ||
082 | 0 | |a 541.393 |2 21 | |
245 | 1 | 0 | |a Electron transfer in chemistry |n 4 |p Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems |c Vincenzo Balzani (ed.) |
264 | 1 | |a Weinheim [u.a.] |b Wiley-VCH |c 2001 | |
300 | |a XLVII, 804 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Oxidation-reduction reaction | |
700 | 1 | |a Balzani, Vincenzo |d 1936- |e Sonstige |0 (DE-588)10907811X |4 oth | |
773 | 0 | 8 | |w (DE-604)BV013463647 |g 4 |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009188982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009188982 |
Datensatz im Suchindex
_version_ | 1804128254288723968 |
---|---|
adam_text | VINCENZO BALZANI (ED.) ELECTRON TRANSFER IN CHEMISTRY A CATALYSIS OF
ELECTRON TRANSFER HETEROGENEOUS SYSTEMS GAS-PHASE SYSTEMS WILEYVCH
WEINHEIM * NEW YORK * CHICHESTER BRISBANE * SINGAPORE * TORONTO VOLUME
IV CONTENTS XXXIII PART 1 CATALYSIS OF ELECTRON TRANSFER 1 SHUNICHI
FUKUZUMI (ED.) 1 FUNDAMENTAL CONCEPTS OF CATALYSIS IN ELECTRON TRANSFER
3 SHUNICHI FUKUZUMI 1 . 1 INTRODUCTION 3 1.2 FACTORS TO ACCELERATE RATES
OF ELECTRON TRANSFER 5 1.3 ACID CATALYSIS IN ELECTRON TRANSFER 8 1.3.1
CATALYSIS OF BRONSTED ACID 8 1.3.2 DECELERATION AND ACCELERATION EFFECTS
OF BRONSTED ACID 14 1.3.3 CATALYSIS OF METAL IONS 15 1.3.4 ACID
CATALYSIS IN OVERALL REACTIONS 27 1.3.5 LEWIS ACID CATALYSIS IN C-C BOND
FORMATION VIA ELECTRON TRANSFER 43 1.3.6 ACID CATALYSIS IN PHOTOINDUCED
ELECTRON TRANSFER 44 1.4 BASE CATALYSIS IN ELECTRON TRANSFER 47 1.4.1
BASE CATALYSIS BY DEPROTONATION OF ELECTRON DONORS 48 1.4.2 BASE
CATALYSIS VIA FORMATION OF BASE ADDUCTS 51 1.4.3 CONTROL OF
REORGANIZATION ENERGY BY BASE CATALYSIS 54 1.5 CONCLUSIONS AND FUTURE
PROSPECTS 58 ACKNOWLEDGMENTS 59 REFERENCES 59 2 REDOX MODULATION BY
MOLECULAR RECOGNITION 68 VINCENT M. ROTELLO 2. 1 INTRODUCTION 68 2.2
MODULATION OF REDOX POTENTIALS BY NONCOVALENT INTERACTIONS 69 2.2.1
HYDROGEN BONDING 71 2.2.2 AROMATIC STACKING 74 2.2.3 OTHER ELECTROSTATIC
INTERACTIONS 77 2.3 RECOGNITION-MEDIATED CONTROL OF MOLECULAR ORBITAL
GEOMETRIES 79 2.4 PROTON-COUPLED ELECTRON TRANSFER 82 2.5 SUMMARY AND
OUTLOOK 85 REFERENCES 86 3 HOMOGENEOUS REDOX CATALYSIS IN CO2 FIXATION
88 ETSUKO FUJITA AND BRUCE S. BRUNSCHWIG 3.1 INTRODUCTION 88 3.2
MACROCYCLIC COMPLEXES OF COBALT AND NICKEL 89 3.2.1 OVERVIEW OF CO2
REDUCTION SYSTEMS MEDIATED BY COBALT AND NICKEL MACROCYCLES 89 3.2.2
PROPERTIES OF THE COBALT AND NICKEL MACROCYCLES 92 3.2.3
ELECTROCATALYTIC SYSTEMS 97 XXXIV CONTENTS 3.2.4 PHOTOCATALYTIC SYSTEMS
98 3.3 RE(A-DIIMINE)(CO) 3 X, RE(A-DIIMINE)(CO) 2 XX AND SIMILAR
COMPLEXES 104 3.3.1 OVERVIEW OF CO2 REDUCTION SYSTEM-MEDIATED RHENIUM
COMPLEXES 104 3.3.2 PROPERTIES OF RE(A-DIIMINE)(CO) 3 X AND
RE(A-DIIMINE)(CO) 2 XX 104 3.3.3 ELECTROCHEMICAL SYSTEMS: ONE- AND
TWO-ELECTRON PATHWAYS 116 3.3.4 PHOTOCHEMICAL SYSTEMS 118 3.4
CONCLUSIONS 121 ACKNOWLEDGMENTS 122 ABBREVIATIONS 122 REFERENCES 123 4
THE ELECTROCHEMICAL AND PHOTOCHEMICAL ACTIVATION OF REDOX ENZYMES 127
EUGENII KATZ, ANDREW N. SHIPWAY AND ITAMAR WILLNER 4.1 INTRODUCTION 127
4.2 THE ELECTROCHEMICAL ACTIVATION OF ENZYMES 128 4.2.1 DIRECT,
NONMEDIATED ELECTRON TRANSFER BETWEEN ENZYMES AND ELECTRODES 128 4.2.2
ELECTRON TRANSFER BETWEEN ENZYMES AND ELECTRODES PROVIDED BY DIFFUSIONAL
MEDIATORS 131 4.2.3 ELECTROCHEMISTRY OF ENZYMES AT ELECTRODES
FUNCTIONALIZED WITH MONOLAYERS OF REDOX RELAYS 133 4.2.4 ELECTROCHEMICAL
ACTIVATION OF ENZYMES BY THE ATTACHMENT OF REDOX RELAYS TO THE PROTEIN
BACKBONE 135 4.2.5 ELECTRICAL WIRING OF ENZYMES ENTRAPPED IN POLYMERIE
MATRICES ON ELECTRODE SUPPORTS 140 4.2.6 ELECTRICAL WIRING OF ENZYMES
INCORPORATED INTO INORGANIC MATRICES 146 4.2.7 ELECTRICAL WIRING OF
NANO-ENGINEERED ENZYMES 151 4.2.8 BIOSENSOR, BIOELECTRONIC AND
BIOTECHNOLOGICAL APPLICATIONS OF ELECTRICALLY WIRED ENZYMES 159 4.3
THE PHOTOCHEMICAL ACTIVATION OF ENZYMES 170 4.3.1 BIOLOGICAL
TRANSFORMATIONS DRIVEN BY THE PHOTOCHEMICAL REGENERATION OF
NAD(P)+/NAD(P)H COFACTORS 172 4.3.2 ENZYMATIC REACTIONS DRIVEN BY THE
PHOTOCHEMICAL REGENERATION OF SYNTHETIC ELECTRON RELAYS 179 4.3.3
PHOTOCHEMICAL ACTIVATION OF ENZYMES USING DYES COVALENTLY TETHERED TO
THE PROTEIN BACKBONE 181 4.3.4 PHOTOCHEMICAL ACTIVATION OF
SEMI-SYNTHETIC ENZYMES RECONSTITUTED WITH NON-NATURAL PHOTOSENSITIVE
COFACTORS 185 4.3.5 APPLICATIONS OF PHOTOACTIVATED REDOX ENZYMES 190 4.4
CONCLUSION AND PERSPECTIVES 191 ACKNOWLEDGMENTS 193 REFERENCES 193
CONTENTS XXXV 5 INTERPROTEIN AND INTRAPROTEIN ELECTRON TRANSFER
MECHANISMS 202 GORDON TOLLIN 5.1 INTRODUCTION 202 5.2 EXPERIMENTAL
METHODS FOR INVESTIGATING PROTEIN ET REACTIONS 205 5.2.1 TIME-RESOLVED
SPECTROPHOTOMETRY 205 5.2.2 USE OF IONIC STRENGTH TO PROBE ELECTROSTATIC
INTERACTIONS 208 5.3 INTERPROTEIN ELECTRON TRANSFER REACTIONS 210 5.3.1
FERREDOXIN (FD)-FERREDOXIN:NADP+ REDUCTASE (FNR) 210 5.3.2 CYTOCHROME/
(CYT/)-PLASTOCYANIN (PC) 218 5.3.3 CYTOCHROME C (CYT C) -CYTOCHROME C
PEROXIDASE (CCP) 221 5.4 INTRAPROTEIN ELECTRON TRANSFER REACTIONS 222
5.4.1 FLAVOCYTOCHROME BI (FCYT B) 222 5.4.2 SULFITE OXIDASE (SO) 224
5.4.3 CYTOCHROME P450BM-3 225 5.5 CONCLUSIONS 227 ACKNOWLEDGMENTS 228
REFERENCES 228 6 NOVEL ORGANIC SYNTHESES THROUGH SEMICONDUCTOR
PHOTOCATALYSIS 232 HORST KISCH AND MATTHIAS HOPFNER 6.1 SCOPE AND
INTRODUCTION 232 6.2 HETEROGENEOUS PHOTOCATALYSIS WITH SEMICONDUCTOR
POWDERS 234 6.2.1 FUNDAMENTALS 234 6.2.2 THERMODYNAMIC ASPECTS 235 6.2.3
KINETIC ASPECTS 237 6.2.4 SURFACE AREA AND PARTICLE SIZE 239 6.2.5
PHOTOCORROSION 240 6.2.6 CHARACTERIZATION OF ZNS AND CDS 242 6.3
SEMICONDUCTOR PHOTOCATALYSIS TYPE A 245 6.3.1 DEALKYLATION, CYCLIZATION
AND HYDROALKYLATION 245 6.3.2 DEHYDRODIMERIZATION OF CYCLIC ENOL/ALLYL
ETHERS AND OLEFLNS 248 6.4 SEMICONDUCTOR PHOTOCATALYSIS TYPE B 256 6.4.1
LINEAR ADDITION OF CYCLIC ENOL/ALLYL ETHERS AND OLEFLNS TO 1,2-DIAZENES
256 6.4.2 LINEAR ADDITION OF CYCLIC ENOL/ALLYL ETHERS AND OLEFLNS TO
IMINES.. 264 6.5 SUMMARY AND OUTLOOK 270 REFERENCES 270 PART 2
HETEROGENEOUS SYSTEMS 277 THOMAS E. MALLOUK (ED.) 1 ELECTRON TRANSFER AT
SEMICONDUCTOR-ELECTROLYTE INTERFACES 279 KRISHNAN RAJESHWAR 1.1
INTRODUCTION AND SCOPE 279 1.2 ELECTRON ENERGY LEVELS IN SEMICONDUCTORS
AND ENERGY BAND MODEL 280 XXXVI CONTENTS 1.3 THE
SEMICONDUCTOR-ELECTROLYTE INTERFACE AT EQUILIBRIUM 285 1.3.1 THE
EQUILIBRATION PROCESS 285 1.3.2 THE DEPLETION LAYER 287 1.3.3 MAPPING OF
THE SEMICONDUCTOR BAND-EDGE POSITIONS RELATIVE TO SOLUTION REDOX LEVELS
289 1.3.4 SURFACE STATES AND OTHER COMPLICATIONS 293 1.4 EXPERIMENTAL
METHODS FOR STUDYING CHARGE TRANSFER AT SEMICONDUCTOR-ELECTROLYTE
INTERFACES 294 1.5 CHARGE-TRANSFER PROCESSES IN THE DARK 296 1.5.1
CURRENT-POTENTIAL BEHAVIOR 296 1.5.2 DARK PROCESSES MEDIATED BY SURFACE
STATES OR BY SPACE CHARGE LAYER RECOMBINATION 301 1.5.3 RATE-LIMITING
STEPS IN CHARGE-TRANSFER PROCESSES IN THE DARK 304 1.6 LIGHT ABSORPTION
BY THE SEMICONDUCTOR ELECTRODE AND CARRIER COLLECTION 306 1.6.1 LIGHT
ABSORPTION AND CARRIER GENERATION 306 1.6.2 CARRIER COLLECTION 307 1.6.3
PHOTOCURRENT-POTENTIAL BEHAVIOR 312 1.6.4 DYNAMICS OF PHOTOINDUCED
CHARGE TRANSFER 315 1.6.5 HOT CARRIER TRANSFER 320 1.7 MULTI-ELECTRON
PHOTOPROCESSES 322 1.8 NANOCRYSTALLINE SEMICONDUCTOR FILMS AND SIZE
QUANTIZATION 327 1.8.1 INTRODUCTORY REMARKS 327 1.8.2 PREPARATION OF
NANOCRYSTALLINE ELECTRODE FILMS 328 1.8.3 THE NANOCRYSTALLINE
FILM-ELECTROLYTE INTERFACE AND CHARGE STORAGE BEHAVIOR IN THE DARK 329
1.8.4 PHOTOEXCITATION AND CARRIER COLLECTION: STEADY-STATE BEHAVIOR 330
1.8.5 PHOTOEXCITATION AND CARRIER COLLECTION: DYNAMIC BEHAVIOR 333 1.8.6
SIZE QUANTIZATION 335 1.9 CHARGE TRANSFER ACROSS CHEMICALLY MODIFIED
SEMICONDUCTOR- ELECTROLYTE INTERFACES 336 1.9.1 SINGLE CRYSTALS 336
1.9.2 NANOCRYSTALLINE SEMICONDUCTOR FILMS AND COMPOSITES 338 1.10
CONCLUDING REMARKS 342 ACKNOWLEDGMENTS 342 REFERENCES 343 2 DYE
SENSITIZATION OF ELECTRODES 353 PING QU AND GERALD J. MEYER 2. 1 DYE
SENSITIZATION OF PLANAR ELECTRODES 353 2.1.1 THERMODYNAMICS AND
SENSITIZATION MECHANISMS 354 2.1.2 EXAMPLES OF SENSITIZATION STUDIES AT
PLANAR ELECTRODES 366 2.2 DYE SENSITIZATION OF COLLOIDAL SEMICONDUCTOR
ELECTRODES 377 2.2.1 MATERIALS, SPECTROSCOPIC AND ELECTROCHEMICAL
PROPERTIES OF NANOCRYSTALLINE TIUE2 379 2.2.2 EXAMPLES OF INTERFACIAL
ELECTRON TRANSFER AT COLLOIDAL SEMICONDUCTOR ELECTRODES 392 CONTENTS
XXXVII 2.3 CONCLUSIONS 405 ACKNOWLEDGMENTS 406 REFERENCES 406 3
ELECTRON-TRANSFER PROCESSES IN ZEOLITES AND RELATED MICROHETEROGENEOUS
MEDIA 412 ANAND S. VAIDYALINGAM, MICHAEL A. COUTANT AND PRABIR K. DUTTA
3.1 INTRODUCTION 412 3.2 DESCRIPTION OF POROUS MEDIA 413 3.2.1
MICROPOROUS MATERIALS AND ZEOLITES 413 3.2.2 MESOPOROUS MATERIALS 423
3.2.3 SOL-GEL MATERIALS 427 3.3 ELECTRON-TRANSFER REACTIONS 429 3.3.1
MICROPOROUS MATERIALS AND ZEOLITES 429 3.3.2 MESOPOROUS MATERIALS 465
3.3.3 SOL-GEL MATERIALS 469 3.4 CONCLUSIONS 478 ACKNOWLEDGMENTS 479
REFERENCES 479 4 ELECTRON TRANSFER IN LAYERED AND INTERCALATED COMPOUNDS
487 VASUDEVA BHAT AND KAZUNARI DOMEN 4.1 INTRODUCTION 487 4.2 LAYERED
OXIDES OF TRANSITION METALS 487 4.2.1 K 4 NB 6 OI 7 489 4.2.2 KTINB0 5
-TYPE OXIDES 505 4.2.3 PEROVSKITE-RELATED LAYERED OXIDES 511 4.3 CLAYS
519 4.3.1 TI0 2 IN MONTMORILLONITE 520 4.3.2 FE 2 0 3 IN MONTMORILLONITE
521 4.3.3 CDS AND ZNS MIXTURES IN COLLOIDAL MONTMORILLONITE 521 4.3.4
PHOTOACTIVE SPECIES INTERCALATED INTO LAMELLAR OXIDES 522 4.4 LAYERED
DOUBLE HYDROXIDES (LDHS) [171-174] 526 4.4.1 PHOTOCATALYSIS IN LDHS
INTERCALATED WITH CDS AND CDS/ZNS 527 4.4.2 PHOTOCATALYSIS IN LDHS
PILLARED WITH POLYOXOMETALLATES 527 4.4.3 LDHS INTERCALATED WITH
PHOTORESPONSIVE SPECIES 528 4.5 ARTIFICIALLY BUILT MULTILAYER SYSTEMS
528 4.5.1 TOWARDS PHOTOINDUCED CHARGE SEPARATION 529 4.6 CONCLUSION 535
REFERENCES 536 5 FUNDAMENTAL ASPECTS OF ELECTRON TRANSFER IN
SUBSTRATE-SUPPORTED ORGANIZED MOLECULAR ASSEMBLIES 541 ROBERT S. CLEGG
AND JAMES E. HUTCHISON 5.1 INTRODUCTION 541 5.2 BACKGROUND 543 5.2.1
MONOLAYER AND MULTILAYER SYSTEMS 543 XXXVIII CONTENTS 5.2.2
CHARACTERIZATION OF MOLECULAR ASSEMBLIES 546 5.3 FUNDAMENTAL STUDIES OF
ELECTRON TRANSFER IN ORGANIZED ASSEMBLIES 550 5.3.1 ELECTRON TRANSFER IN
LANGMUIR-BLODGETT SYSTEMS 550 5.3.2 ELECTRON TRANSFER IN SELF-ASSEMBLED
SYSTEMS 552 5.4 SUMMARY AND OUTLOOK 572 REFERENCES 574 6 ELECTRON
TRANSFER IN SELF-ORGANIZING SYSTEMS OF AMPHIPHILES 578 JAMES K. HURST
AND RAFAIL F. KHAIRUTDINOV 6.1 INTRODUCTION 578 6.2 GENERAL ATTRIBUTES
OF SURFACTANT ASSEMBLIES 578 6.2.1 MICELLES AND REVERSED MICELLES 579
6.2.2 VESICLES AND MEMBRANES 581 6.3 SURFACTANT ASSEMBLY
MICROENVIRONMENTS 584 6.3.1 PARTITIONING OF DOPANTS IN MICELLES 585
6.3.2 PARTITIONING OF DOPANTS IN VESICLES 586 6.3.3 MICROVISCOSITIES OF
SURFACTANT ASSEMBLIES 586 6.3.4 LOCAL POLARITY AND ELECTRIC FIELD
GRADIENTS 589 6.4 ELECTRON-TRANSFER REACTIONS IN MICELLES 592 6.4.1
STABILIZATION OF CHARGE-SEPARATED STATES 592 6.4.2 KINETIC ANALYSIS OF
ELECTRON-TRANSFER REACTIONS IN MICELLES 597 6.5 ELECTRON-TRANSFER
REACTIONS IN VESICLES AND MEMBRANES 601 6.5.1 BIOLOGICAL ELECTRON
TRANSPORT AND ARTIFICIAL PHOTOSYNTHESIS 601 6.5.2 PRIMARY CHARGE
SEPARATION EVENTS 602 6.5.3 KINETIC ANALYSES 607 6.5.4 TRANSMEMBRANE
OXIDATION-REDUCTION REACTIONS 609 ACKNOWLEDGMENTS 617 REFERENCES 618
PART 3 GAS-PHASE SYSTEMS 625 YEHUDA HAAS (ED.) 1 INTRODUCTION AND
THEORETICAL BACKGROUND 627 YEHUDA HAAS 1.1 SOME NOVEL EXPERIMENTAL
ADVANCES 629 1.2 THEORETICAL BACKGROUND 630 2 ELECTRON-TRANSFER
REACTIONS INVOLVING ATOMS, MOLECULES AND CLUSTERS 632 BENOIT SOEP AND
JEAN MICHEL MESTDAGH 2. 1 INTRODUCTION 632 2.2 EXPERIMENTAL METHODS 635
2.3 THE HARPOON MODEL AND BEYOND: A HISTORICAL REVIEW 637 CONTENTS XXXIX
2.3.1 THE EARLY AGE: THE HARPOON, A MODEL TO DESCRIBE REACTIONS OF
GROUND-STATE ALKALI METAL ATOMS 637 2.3.2 A FIRST MULTI-DIMENSIONAL
REACTION MODEL: THE DIPR-DIP MODEL . 640 2.3.3 THE DOUBLE HARPOON: A
MECHANISM ADAPTED TO ALKALINE EARTH METAL ATOM REACTIONS 642 2.3.4
BEYOND THE HARPOON MODEL: THE HOMO/LUMO MATCHING TO DESCRIBE TRANSITION
METAL REACTIVITY 647 2.3.5 MULTICENTER HARPOON REACTIONS 649 2.3.6
HARPOON REACTIONS WITH SURFACES 650 2.4 EFFECT OF CHANGING THE INTERNAL
STATE OF THE REACTANTS 651 2.4.1 CHANGING THE VIBRATIONAL STATE OF THE
MOLECULAR REACTANT 651 2.4.2 ELECTRONIC EXCITATION TO OVERCOME AN
ENDOERGICITY BARRIER 652 2.4.3 EFFECT OF ELECTRONIC EXCITATION ON THE
REACTION DYNAMICS 654 2.5 STEREODYNAMICS OF THE ELECTRON TRANSFER 660
2.6 VAN DER WAALS COMPLEXES: A TOOL TO EXPLORE THE POTENTIAL ENERGY
SURFACE IN THE ELECTRON-TRANSFER REGION 662 2.6.1 LOCAL EXCITATION AND
SUBSEQUENT ELECTRON TRANSFER 663 2.6.2 TIME-RESOLVED OBSERVATION OF
ELECTRON TRANSFER IN EXCITED-STATE REACTIONS: THE BA-FCH 3 CASE 675
2.6.3 DIRECT EXCITATION OF AN ELECTRON-TRANSFER COMPLEX 675 2.7
PREREACTIVE BEHAVIOR IN GROUND STATES 677 2.7.1 STABILIZING AN
ELECTRON-TRANSFER COMPLEX 677 2.7.2 OBSERVING PARTIAL ELECTRON TRANSFERS
IN THE GAS PHASE 678 2.8 TOWARDS ELECTRON-TRANSFER REACTIONS IN
CONDENSED PHASES 680 2.8.1 SOLVENT-INDUCED ELECTRON TRANSFER IN CLUSTERS
680 2.8.2 DYNAMICS OF ELECTRON SOLVATION IN FINITE WATER CLUSTERS 681
2.8.3 CLUSTER ISOLATED CHEMICAL REACTIONS 681 2.9 SUMMARY AND
CONCLUSIONS 687 REFERENCES 688 3 TICT MOLECULES 697 JERZY HERBICH AND
BERNHARD BRUTSCHY 3.1 PHOTOINDUCED ELECTRON TRANSFER IN DONOR-ACCEPTOR
(D-A) MOLECULES IN SOLUTIONS 697 3.1.1 INTRODUCTION 697 3.1.2
SOLVENT-DEPENDENT DUAL LUMINESCENCE 698 3.1.3 ELECTRONIC AND MOLECULAR
STRUCTURE OF LARGE D-A 7I-SYSTEMS 701 3.1.4 TICT MOLECULES 706 3.2
SUPERSONIC JET SPECTROSCOPY OF SELECTED D-A MOLECULES 707 3.2.1
INTRODUCTION F. 707 3.2.2 BARE MOLECULES 711 3.2.3 MICROSOLVATION
EFFECTS 716 3.2.4 CONCLUDING REMARKS 731 3.3 SUMMARY AND PERSPECTIVES
732 ACKNOWLEDGMENTS 733 REFERENCES 734 XL CONTENTS 4 EXCIPLEXES OF LARGE
MOLECULES 742 YEHUDA HAAS 4.1 INTRODUCTION 742 4.1.1 EVIDENCE FOR
ELECTRON TRANSFER IN ISOLATED SYSTEMS 745 4.2 STRUCTURE-REACTIVITY
RELATIONSHIPS 747 4.2.1 THE CO-EXISTENCE OF SEVERAL ISOMERS 748 4.2.2
HOLE-BURNING SPECTROSCOPY : 748 4.2.3 TWO-COLOR PHOTOIONIZATION 757 4.3
DISTANCE DEPENDENCE OF CHARGE SEPARATION; MECHANISMS 758 4.4 RATE OF
ELECTRON TRANSFER 761 4.5 EXCIPLEXES IN REACTIVE SYSTEMS 763 4.6
MODELING 769 4.7 CONCLUSIONS 772 ACKNOWLEDGMENTS 773 REFERENCES 773 5
ISOLATED SUPERMOLECULES 775 YASUHIRO OHSHIMA, OKITSUGU KAJIMOTO AND
KIYOKAZU FUKE 5.1 INTRODUCTION 775 5.2 STEPWISE CHARGE SEPARATION IN
ALKALI METAL ATOM-CONTAINING CLUSTERS 776 5.2.1 ALKALI METAL ATOM
CLUSTERS SOLVATED WITH AMMONIA MOLECULES 777 5.2.2 HYDRATED CLUSTERS OF
ALKALI METAL ATOMS 781 5.3 CHARGE TRANSFER IN SOLVATED ANION CLUSTERS
786 5.3.1 DIPOLE-BOUND EXCITED STATES IN I - CLUSTERS SOLVATED WITH
SMALL ORGANIC MOLECULES 787 5.3.2 CTTS PRECURSOR STATES IN I _ -(WATER)*
CLUSTERS 789 5.3.3 DIPOLE-BOUND EXCITED STATE IN I (XE)* CLUSTERS 793
5.4 ELECTRON-TRANSFER REACTIONS IN LARGE DONOR-ACCEPTOR MOLECULES
STUDIED UNDER JET-COOLED CONDITIONS 795 5.4.1 DIRECTLY CONNECTED EDA
MOLECULES 796 5.4.2 BRIDGED EDA MOLECULES 800 5.5 CONCLUSION AND OUTLOOK
801 REFERENCES 802
|
any_adam_object | 1 |
author_GND | (DE-588)10907811X |
building | Verbundindex |
bvnumber | BV013463671 |
ctrlnum | (OCoLC)48467533 (DE-599)BVBBV013463671 |
dewey-full | 541.393 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.393 |
dewey-search | 541.393 |
dewey-sort | 3541.393 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01185nam a2200289 cc4500</leader><controlfield tag="001">BV013463671</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001129s2001 ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)48467533</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013463671</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.393</subfield><subfield code="2">21</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electron transfer in chemistry</subfield><subfield code="n">4</subfield><subfield code="p">Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems</subfield><subfield code="c">Vincenzo Balzani (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLVII, 804 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidation-reduction reaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balzani, Vincenzo</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)10907811X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013463647</subfield><subfield code="g">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009188982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009188982</subfield></datafield></record></collection> |
id | DE-604.BV013463671 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:46:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009188982 |
oclc_num | 48467533 |
open_access_boolean | |
owner | DE-29T DE-703 DE-384 DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-29T DE-703 DE-384 DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-11 |
physical | XLVII, 804 S. Ill., graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Electron transfer in chemistry 4 Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems Vincenzo Balzani (ed.) Weinheim [u.a.] Wiley-VCH 2001 XLVII, 804 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxidation-reduction reaction Balzani, Vincenzo 1936- Sonstige (DE-588)10907811X oth (DE-604)BV013463647 4 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009188982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Electron transfer in chemistry Oxidation-reduction reaction |
title | Electron transfer in chemistry |
title_auth | Electron transfer in chemistry |
title_exact_search | Electron transfer in chemistry |
title_full | Electron transfer in chemistry 4 Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems Vincenzo Balzani (ed.) |
title_fullStr | Electron transfer in chemistry 4 Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems Vincenzo Balzani (ed.) |
title_full_unstemmed | Electron transfer in chemistry 4 Catalysis of electron transfer ; heterogeneous systems ; gas-phase systems Vincenzo Balzani (ed.) |
title_short | Electron transfer in chemistry |
title_sort | electron transfer in chemistry catalysis of electron transfer heterogeneous systems gas phase systems |
topic | Oxidation-reduction reaction |
topic_facet | Oxidation-reduction reaction |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009188982&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013463647 |
work_keys_str_mv | AT balzanivincenzo electrontransferinchemistry4 |