Spreadsheet modeling and decision analysis: a practical introduction to management science
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cincinnati, Ohio
South Western College Publ.
2001
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 794 S. 2 CD-ROM |
ISBN: | 0324021224 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013345540 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 000915s2001 |||| 00||| eng d | ||
020 | |a 0324021224 |9 0-324-02122-4 | ||
035 | |a (OCoLC)247045217 | ||
035 | |a (DE-599)BVBBV013345540 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-945 | ||
050 | 0 | |a T57.62 | |
082 | 0 | |a 658.403028553 | |
084 | |a QH 444 |0 (DE-625)141591: |2 rvk | ||
084 | |a WIR 522f |2 stub | ||
084 | |a MAT 900f |2 stub | ||
100 | 1 | |a Ragsdale, Cliff T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spreadsheet modeling and decision analysis |b a practical introduction to management science |c Cliff T. Ragsdale |
250 | |a 3. ed. | ||
264 | 1 | |a Cincinnati, Ohio |b South Western College Publ. |c 2001 | |
300 | |a XXI, 794 S. |e 2 CD-ROM | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Decision making |x Computer simulation | |
650 | 4 | |a Decision support systems |x Computer programs | |
650 | 4 | |a Electronic spreadsheets | |
650 | 4 | |a Management science |x Computer simulation | |
650 | 4 | |a Operations research |x Computer simulation | |
650 | 0 | 7 | |a Tabellenkalkulation |0 (DE-588)4117161-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Management |0 (DE-588)4037278-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operations Research |0 (DE-588)4043586-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | 1 | |a Management |0 (DE-588)4037278-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 1 | 1 | |a Operations Research |0 (DE-588)4043586-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Tabellenkalkulation |0 (DE-588)4117161-5 |D s |
689 | 2 | 1 | |a Operations Research |0 (DE-588)4043586-6 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009101344&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009101344 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804128120497766400 |
---|---|
adam_text | Brief Contents
1 Introduction to Modeling and Decision Analysis 1
2 Introduction to Optimization and Linear Programming 16
3 Modeling and Solving LP Problems in a Spreadsheet 44
4 Sensitivity Analysis and the Simplex Method 137
5 Network Modeling 177
6 Integer Linear Programming 230
7 Goal Programming and Multiple Objective Optimization 297
8 Nonlinear Programming Evolutionary Optimization 336
9 Regression Analysis 407
10 Discriminant Analysis 459
11 Time Series Forecasting 488
12 Introduction to Simulation Using Crystal Ball 560
13 Queuing Theory 628
14 Project Management 661
15 Decision Analysis 713
Index 789
vii
Contents
1. Introduction to Modeling and Decision Analysis 1
Introduction 1
The Modeling Approach to Decision Making 2
Characteristics and Benefits of Modeling 4
Mathematical Models 5
Categories of Mathematical Models 6
The Problem Solving Process 8
Good Decisions vs. Good Outcomes 11
The World of Management Science 12
Summary 14
References 14
Questions and Problems 14
2. Introduction to Optimization
and Linear Programming 16
Introduction 16
Applications of Mathematical Optimization 16
Characteristics of Optimization Problems 17
Expressing Optimization Problems Mathematically 18
Decisions 18 Constraints 18 Objective 19
Mathematical Programming Techniques 20
ix
x Contents
An Example LP Problem 20
Formulating LP Models 21
Steps in Formulating an LP Model 21
Summary of the LP Model for the Example Problem 22
The General Form of an LP Model 23
Solving LP Problems: An Intuitive Approach 24
Solving LP Problems: A Graphical Approach 25
Plotting the First Constraint 25 Plotting the Second Constraint 26 Plotting the
Third Constraint 28 The Feasible Region 29 Plotting the Objective Function 29
Finding the Optimal Solution Using Level Curves 31 Finding the Optimal Solution
by Enumerating the Corner Points 32 Summary of Graphical Solution to LP
Problems 32
Special Conditions in LP Models 33
Alternate Optimal Solutions 34 Redundant Constraints 34 Unbounded Solutions
36 ^feasibility 38
Summary 39
References 39
Questions and Problems 40
3. Modeling and Solving LP Problems
in a Spreadsheet 44
Introduction 44
Spreadsheet Solvers 45
Solving LP Problems in a Spreadsheet 45
The Steps in Implementing an LP Model in a Spreadsheet 46
A Spreadsheet Model for the Blue Ridge Hot Tubs Problem 47
Organizing the Data 47 Representing the Decisions Variables 48 Representing the
Objective Function 48 Representing the Constraints 49 Representing the Bounds
on the Decision Variables 50
How Solver Views the Model 51
Using Solver 53
Denning the Set (or Target) Cell 55 Defining the Variable Cells 56 Defining the
Constraint Cells 57 Defining the Nonnegativity Conditions 58 Reviewing the
Model 59 Options 59 Solving the Model 59
Goals and Guidelines for Spreadsheet Design 61
Make vs. Buy Decisions 63
Defining the Decision Variables 63 Defining the Objective Function 64 Defining
the Constraints 64 Implementing the Model 64 Solving the Model 66 Analyzing
the Solution 66
An Investment Problem 68
Defining the Decision Variables 69 Denning the Objective Function 69 Defining
the Constraints 69 Implementing the Model 70 Solving the Model 71 Analyzing
the Solution 72
Contents xi
A Transportation Problem 73
Defining the Decision Variables 73 Defining the Objective Function 74 Defining
the Constraints 74 Implementing the Model 75 Heuristic Solution for the Model 77
Solving the Model 78 Analyzing the Solution 78
A Blending Problem 79
Defining the Decision Variables 80 Defining the Objective Function 80 Defining
the Constraints 80 Some Observations About Constraints, Reporting, and Scaling 81
Re scaling the Model 82 Implementing the Model 83 Solving the Model 85
Analyzing the Solution 85
A Production and Inventory Planning Problem 86
Defining the Decision Variables 87 Defining the Objective Function 87 Defining
the Constraints 88 Implementing the Model 89 Solving the Model 91 Analyzing
the Solution 91
A Multi Period Cash Flow Problem 92
Defining the Decision Variables 93 Defining the Objective Function 94 Defining
the Constraints 94 Implementing the Model 96 Solving the Model 99 Analyzing
the Solution 100 Modifying the Taco Viva Problem to Account for Risk (Optional)
100 Implementing the Risk Constraints 102 Solving the Model 104 Analyzing
the Solution 105
Data Envelopment Analysis (DEA) 105
Defining the Decision Variables 106 Defining the Objective 106 Defining the
Constraints 106 Implementing the Model 107 Solving the Model 109 Analyzing
the Solution 114
Summary 116
References 116
The World of Management Science 116
Questions and Problems 117
Cases 133
4. Sensitivity Analysis and the Simplex Method 137
Introduction 137
The Purpose of Sensitivity Analysis 137
Approaches to Sensitivity Analysis 138
An Example Problem 139
The Answer Report 140
The Sensitivity Report 141
Changes in the Objective Function Coefficients 141 A Note About Constancy 142
Alternate Optimal Solutions 143 Changes in the RHS Values 144 Shadow Prices
for Nonbinding Constraints 144 A Note About Shadow Prices 145 Shadow Prices
and the Value of Additional Resources 147 Other Uses of Shadow Prices 147 The
Meaning of the Reduced Costs 149 Analyzing Changes in Constraint Coefficients
151 Simultaneous Changes in Objective Function Coefficients 152 A Warning
About Degeneracy 153
The Limits Report 153
xii Contents
The Sensitivity Assistant Add in (Optional) 154
Creating Spider Tables and Plots 155 Creating a Solver Table 158 Comments 161
The Simplex Method (Optional) 161
Creating Equality Constraints Using Slack Variables 161 Basic Feasible Solutions
162 Finding the Best Solution 164
Summary 165
References 165
The World of Management Science 166
Questions and Problems 167
Case 174
5. Network Modeling 177
Introduction 177
The Transshipment Problem 177
Characteristics of Network How Problems 178 The Decision Variables for Network
Flow Problems 179 The Objective Function for Network Row Problems 180 The
Constraint for Network Flow Problems 180 Implementing the Model in a
Spreadsheet 182 Analyzing the Solution 183
The Shortest Path Problem 185
An LP Model for the Example Problem 186 The Spreadsheet Model and Solution
187 Network Flow Models and Integer Solutions 189
The Equipment Replacement Problem 189
The Spreadsheet Model and Solution 191
Transportation/Assignment Problems 193
Generalized Network Flow Problems 195
Formulating an LP Model for the Recycling Problem 196 Implementing the Model
197 Analyzing the Solution 199
Maximal Flow Problems 201
An Example of a Maximal Row Problem 201 The Spreadsheet Model and Solution
203
Special Modeling Considerations 205
Minimal Spanning Tree Problems 206
An Algorithm for the Minimal Spanning Tree Problem 208 Solving the Example
Problem 208
Summary 209
References 210
The World of Management Science 210
Questions and Problems 211
Cases 224
i
Contents xiii
6. Integer Linear Programming 230
Introduction 230
Integrality Conditions 230
Relaxation 231
Solving the Relaxed Problem 232
Bounds 234
Rounding 235
Stopping Rules 237
Solving IIP Problems Using Solver 239
Other ILP Problems 241
An Employee Scheduling Problem 243
Defining the Decision Variables 244 Defining the Objective Function 244 Defining
the Constraints 244 A Note About the Constraints 245 Implementing the Model
246 Solving the Model 246 Analyzing the Solution 247
Binary Variables 248
A Capital Budgeting Problem 248
Defining the Decision Variables 249 Defining the Objective Function 249 Defining
the Constraints 250 Setting Up the Binary Variables 250 Implementing the Model
250 Solving the Model 251 Comparing the Optimal Solution to a Heuristic
Solution 252
Binary Variables and Logical Conditions 254
The Fixed Charge Problem 254
Defining the Decision Variables 255 Defining the Objective Function 256 Defining
the Constraints 256 Determining Values for Big M 257 Implementing the Model
257 Solving the Model 259 Analyzing the Solution 259
Minimum Order/Purchase Size 262
Quantity Discounts 262
Formulating the Model 263 The Missing Constraints 263
A Contract Award Problem 264
Formulating the Model: The Objective Function and Transportation Constraints
265 Implementing the Transportation Constraints 265 Formulating the Model:
The Side Constraints 266 Implementing the Side Constraints 267 Solving the
Model 269 Analyzing the Solution 269
The Branch and Bound Algorithm (Optional) 270
Branching 271 Bounding 273 Branching Again 274 Bounding Again 274
Summary of B B Example 275
Summary 276
References 278
The World of Management Science 278
Questions and Problems 279
Cases 291
I
xiv Contents
7. Goal Programming and
Multiple Objective Optimization 297
Introduction 297
Goal Programming 298
A Goal Programming Example 298
Defining the Decision Variables 299 Defining the Goals 299 Defining the Goal
Constraints 299 Defining the Hard Constraints 300 GP Objective Functions 301
Defining the Objective 302 Implementing the Model 303 Solving the Model 305
Analyzing the Solution 305 Revising the Model 305 Trade offs: The Nature of GP
307
Comments About Goal Programming 308
Multiple Objective Optimization 309
An MOLP Example 310
Defining the Decision Variables 310 Defining the Objectives 311 Defining the
Constraints 311 Implementing the Model 311 Determining Target Values for the
Objectives 312 Summarizing the Target Solutions 315 Determining a GP Objective
316 The MINIMAX Objective 317 Implementing the Revised Model 318 Solving
the Model 319
Comments on MOLP 321
Summary 322
References 323
The World of Management Science 323
Questions and Problems 324
Case 334
8. Nonlinear Programming
Evolutionary Optimization 336
Introduction 336
The Nature of NLP Problems 337
Solution Strategies for NLP Problems 338
Local vs. Global Optimal Solutions 339
Economic Order Quantity Models 342
Implementing the Model 344 Solving the Model 345 Analyzing the Solution 345
Comments on the EOQ Model 347
Location Problems 347
Defining the Decision Variables 349 Denning the Objective 349 Defining the
Constraints 349 Implementing the Model 350 Solving the Model and Analyzing
the Solution 350 Another Solution to the Problem 352 Some Comments About the
Solution to Location Problems 353
Nonlinear Network Flow Problem 353
Defining the Decision Variables 354 Denning the Objective 355 Defining the
Constraints 355 Implementing the Model 356 Solving the Model and Analyzing
the Solution 356
Contents xv
Project Selection Problems 358
Defining the Decision Variables 360 Defining the Objective Function 360 Defining
the Constraints 360 Implementing the Model 361 Solving the Model 363
Optimizing Existing Financial Spreadsheet Models 364
Implementing the Model 365 Optimizing the Spreadsheet Model 366 Analyzing
the Solution 366 Comments on Optimizing Existing Spreadsheets 367
The Portfolio Selection Problem 368
Defining the Decision Variables 369 Defining the Objective 370 Defining the
Constraints 370 Implementing the Model 371 Analyzing the Solution 373
Handling Conflicting Objectives in Portfolio Problems 374
Sensitivity Analysis 376
Lagrange Multipliers 379 Reduced Gradients 379
Solver Options for Solving NLPs 380
Evolutionary Algorithms 381
Beating the Market 383
A Spreadsheet Model for the Problem 383 Solving the Model 383 Analyzing the
Solution 384
The Traveling Salesperson Problem 385
A Spreadsheet Model for the Problem 386 Solving the Model 388 Analyzing the
Solution 388
Summary 389
References 390
The World of Management Science 390
Questions and Problems 391
Cases 404
9. Regression Analysis 407
Introduction 407
An Example 407
Regression Models 410
Simple Linear Regression Analysis 411
Defining Best Fit 412
Solving the Problem Using Solver 413
Solving the Problem Using the Regression Tool 415
Evaluating the Fit 417
The R2 Statistic 420
Making Predictions 422
The Standard Error 422 Prediction Intervals for the New Values of Y 422
Confidence Intervals for Mean Values of Y 425 A Note About Extrapolation 425
Statistical Tests for Population Parameters 426
Analysis of Variance 426 Assumptions for the Statistical Tests 427 A Note About
Statistical Tests 429
1
xvi Contents
Introduction to Multiple Regression 429
A Multiple Regression Example 431
Selecting the Model 431
Models with One Independent Variable 433 Models with Two Independent
Variables 434 Inflating R2 436 The Adjusted R2 Statistic 436 The Best Model with
Two Independent Variables 437 Multicollinearity 437 The Model with Three
Independent Variables 438
Making Predictions 439
Binary Independent Variables 440
Statistical Tests for the Population Parameters 441
Polynomial Regression 441
Expressing Nonlinear Relationships Using Linear Models 443 Summary of
Nonlinear Regression 446
Summary 447
References 448
The World of Management Science 448
Questions and Problems 449
Case 457
10. Discriminant Analysis 459
Introduction 459
The Two Group DA Problem 460
Group Locations and Centroids 461 Calculating Discriminant Scores 463 The
Classification Rule 465 Refining the Cutoff Value 467 Classification Accuracy 468
Classifying New Employees 469
The k Group DA Problem 471
Multiple Discriminant Analysis 472 Distance Measures 474 MDA Classification
476
Summary 478
References 479
The World of Management Science 479
Questions and Problems 480
Case 485
11. Time Series Forecasting 488
Introduction 488
Time Series Methods 489
Measuring Accuracy 489
Stationary Models 490
Contents xvii
Moving Averages 491
Forecasting with the Moving Average Model 494
Weighted Moving Averages 494
Forecasting with the Weighted Moving Average Model 497
Exponential Smoothing 497
Forecasting with the Exponential Smoothing Model 499
Seasonality 501
Stationary Data with Additive Seasonal Effects 502
Forecasting with the Model 505
Stationary Data with Multiplicative Seasonal Effects 506
Forecasting with the Model 509
Trend Models 509
An Example 509
Double Moving Average 510
Forecasting with the Model 512
Double Exponential Smoothing (Holt s Method) 513
Forecasting with Holt s Method 515
Holt Winter s Method for Additive Seasonal Effects 516
Forecasting with Holt Winter s Additive Method 519
Holt Winter s Method for Multiplicative Seasonal Effects 521
Forecasting with Holt Winter s Multiplicative Method 523
Modeling Time Series Trends Using Regression 525
Linear Trend Model 525
Forecasting with the Linear Trend Model 526
Quadratic Trend Model 528
Forecasting with the Quadratic Trend Model 530
Modeling Seasonality with Regression Models 531
Adjusting Trend Predictions with Seasonal Indices 531
Computing Seasonal Indices 532 Forecasting with Seasonal Indices 533 Refining
the Seasonal Indices 535
Seasonal Regression Models 536
The Seasonal Model 538 Forecasting with the Seasonal Regression Model 540
Crystal Ball Predictor 541
Using CB Predictor 542
Combining Forecasts 547
Summary 548
References 548
The World of Management Science 548
Questions and Problems 549
Cases 556
1
!
xviii Contents
12. Introduction to Simulation Using Crystal Ball 560
Introduction 560
Random Variables and Risk 561
Why Analyze Risk? 561
Methods of Risk Analysis 562
Best Case/Worst Case Analysis 562 What If Analysis 563 Simulation 564
A Corporate Health Insurance Example 564
A Critique of the Base Case Model 566
Spreadsheet Simulation Using Crystal Ball 567
Starting Crystal Ball 567
Random Number Generators 568
Discrete vs. Continuous Random Variables 570
Preparing the Model for Simulation 571
Alternate RNG Entry 574
Running the Simulation 574
Selecting the Output Cells to Track 574 Selecting the Number of Iterations 575
Determining the Sample Size 577 Running the Simulation 577
Data Analysis 578
The Best Case and the Worst Case 578 Viewing the Distribution of the Output Cells
579 Viewing the Cumulative Distribution of the Output Cells 579 Obtaining Other
Cumulative Probabilities 581
Incorporating Graphs and Statistics into a Spreadsheet 581
The Uncertainty of Sampling 582
Constructing a Confidence Interval for the True Population Mean 583 Constructing
a Confidence Interval for a Population Proportion 584 Sample Sizes and Confidence
Interval Widths 585
The Benefits of Simulation 586
Additional Uses of Simulation 586
A Reservation Management Example 586
Implementing the Model 587 Using the Decision Table Tool 588
An Inventory Control Example 592
Creating the RNGs 593 Implementing the Model 593 Replicating the Model 597
Optimizing the Model 597 Comments on Using OptQuest 600
A Project Selection Example 601
A Spreadsheet Model 602 Solving the Problem with OptQuest 603 Finding a
Solution with Less Risk 605
Summary 609
The World of Management Science 609
References 610
Questions and Problems 610
Cases 621
Contents xix
13. Queuing Theory 628
Introduction 628
The Purpose of Queuing Models 629
Queuing System Configurations 630
Characteristics of Queuing Systems 631
Arrival Rate 631 Service Rate 633
Kendall Notation 635
Queuing Models 635
The M/M/s Model 637
An Example 637 The Current Situation 637 Adding a Server 638 Economic
Analysis 640
The M/M/s Model with Finite Queue Length 640
The Current Situation 641 Adding a Server 642
The M/M/s Model with Finite Population 642
An Example 644 The Current Situation 644 Adding Servers 646
The M/G/l Model 646
The Current Situation 649 Adding the Automated Dispensing Device 649
The M/D/l Model 650
Simulating Queues the Steady State Assumption 652
Summary 653
References 653
The World of Management Science 654
Questions and Problems 655
Case 660
14. Project Management 661
Introduction 661
An Example 662
Creating the Project Network 662
A Note on Start and Finish Points 664
CPM: An Overview 665
The Forward Pass 666
The Backward Pass 669
Determining the Critical Path 671
A Note on Slack 672
Project Management Using Spreadsheets 673
Determining Earliest and Latest Start Times Using LP 675
An LP Model for Earliest Start Times 676 Implementing the Model in a Spreadsheet
677 Solving the Model 679 An LP Model for Latest Start Times 679 Implementing
and Solving the Model in a Spreadsheet 681 Summarizing the Results 681
xx Contents
Project Crashing 682
An LP Approach to Crashing 684 Determining the Earliest Crash Completion Time
685 Implementing the Model 686 Solving the Model 688 Determining the Least
Costly Crash Schedule 688 Crashing as an MOLP 689
Certainty vs. Uncertainty 690
PERT: An Overview 691
The Problems with PERT 692 Implications 694
Simulating Project Networks 695
An Example 695 Generating Random Activity Times 696 Implementing the Model
696 Running the Simulation 697 Analyzing the Result 699
Microsoft Project 699
Summary 702
References 703
The World of Management Science 704
Questions and Problems 704
Case 711
15. Decision Analysis 713
Introduction 713
Good Decisions vs. Good Outcomes 714
Characteristics of Decision Problems 714
An Example 715
The Payoff Matrix 716
Decision Alternatives 716 States of Nature 716 The Payoff Values 717
Decision Rules 718
Nonprobabilistic Methods 719
The Maximax Decision Rule 719 The Maximin Decision Rule 720 The Minimax
Regret Decision Rule 720
Probabilistic Methods 723
Expected Monetary Value 724 Expected Regret 725 Sensitivity Analysis 727
The Expected Value of Perfect Information 729
Decision Trees 730
Rolling Back a Decision Tree 732
Using TreePlan 734
Adding Branches 734 Adding Event Nodes 735 Adding the Cash Flows 739
Determining the Payoffs and EMVs 741 Other Features 741
Multistage Decision Problems 743
A Multistage Decision Tree 744
Analyzing Risk in a Decision Tree 745
Risk Profiles 746 Strategy Tables 747
Contents xxi
Using Sample Information in Decision Making 750
Conditional Probabilities 750 The Expected Value of Sample Information 752
Computing Conditional Probabilities 753
Bayes s Theorem 755
Utility Theory 756
Utility Functions 757 Constructing Utility Functions 758 Using Utilities to Make
Decisions 760 The Exponential Utility Function 761 Incorporating Utilities in
TreePlan 762
Multicriteria Decision Making 764
The Multicriteria Scoring Model 765
The Analytic Hierarchy Process 766
Pairwise Comparisons 767 Normalizing the Comparisons 768 Consistency 769
Obtaining Scores for the Remaining Criteria 771 Obtaining Criterion Weights 771
Implementing the Scoring Model 773
Summary 773
References 775
The World of Management Science 775
Questions and Problems 776
Case 786
Index 789
|
any_adam_object | 1 |
author | Ragsdale, Cliff T. |
author_facet | Ragsdale, Cliff T. |
author_role | aut |
author_sort | Ragsdale, Cliff T. |
author_variant | c t r ct ctr |
building | Verbundindex |
bvnumber | BV013345540 |
callnumber-first | T - Technology |
callnumber-label | T57 |
callnumber-raw | T57.62 |
callnumber-search | T57.62 |
callnumber-sort | T 257.62 |
callnumber-subject | T - General Technology |
classification_rvk | QH 444 |
classification_tum | WIR 522f MAT 900f |
ctrlnum | (OCoLC)247045217 (DE-599)BVBBV013345540 |
dewey-full | 658.403028553 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.403028553 |
dewey-search | 658.403028553 |
dewey-sort | 3658.403028553 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02253nam a2200565 c 4500</leader><controlfield tag="001">BV013345540</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000915s2001 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0324021224</subfield><subfield code="9">0-324-02122-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247045217</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013345540</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-945</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57.62</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.403028553</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 444</subfield><subfield code="0">(DE-625)141591:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 522f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 900f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ragsdale, Cliff T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spreadsheet modeling and decision analysis</subfield><subfield code="b">a practical introduction to management science</subfield><subfield code="c">Cliff T. Ragsdale</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cincinnati, Ohio</subfield><subfield code="b">South Western College Publ.</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 794 S.</subfield><subfield code="e">2 CD-ROM</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision support systems</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic spreadsheets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management science</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tabellenkalkulation</subfield><subfield code="0">(DE-588)4117161-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Management</subfield><subfield code="0">(DE-588)4037278-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Management</subfield><subfield code="0">(DE-588)4037278-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Tabellenkalkulation</subfield><subfield code="0">(DE-588)4117161-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Operations Research</subfield><subfield code="0">(DE-588)4043586-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009101344&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009101344</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV013345540 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:44:11Z |
institution | BVB |
isbn | 0324021224 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009101344 |
oclc_num | 247045217 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-945 |
owner_facet | DE-91G DE-BY-TUM DE-945 |
physical | XXI, 794 S. 2 CD-ROM |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | South Western College Publ. |
record_format | marc |
spelling | Ragsdale, Cliff T. Verfasser aut Spreadsheet modeling and decision analysis a practical introduction to management science Cliff T. Ragsdale 3. ed. Cincinnati, Ohio South Western College Publ. 2001 XXI, 794 S. 2 CD-ROM txt rdacontent n rdamedia nc rdacarrier Decision making Computer simulation Decision support systems Computer programs Electronic spreadsheets Management science Computer simulation Operations research Computer simulation Tabellenkalkulation (DE-588)4117161-5 gnd rswk-swf Management (DE-588)4037278-9 gnd rswk-swf Operations Research (DE-588)4043586-6 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Computersimulation (DE-588)4148259-1 s Management (DE-588)4037278-9 s DE-604 Operations Research (DE-588)4043586-6 s Tabellenkalkulation (DE-588)4117161-5 s 1\p DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009101344&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ragsdale, Cliff T. Spreadsheet modeling and decision analysis a practical introduction to management science Decision making Computer simulation Decision support systems Computer programs Electronic spreadsheets Management science Computer simulation Operations research Computer simulation Tabellenkalkulation (DE-588)4117161-5 gnd Management (DE-588)4037278-9 gnd Operations Research (DE-588)4043586-6 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4117161-5 (DE-588)4037278-9 (DE-588)4043586-6 (DE-588)4148259-1 |
title | Spreadsheet modeling and decision analysis a practical introduction to management science |
title_auth | Spreadsheet modeling and decision analysis a practical introduction to management science |
title_exact_search | Spreadsheet modeling and decision analysis a practical introduction to management science |
title_full | Spreadsheet modeling and decision analysis a practical introduction to management science Cliff T. Ragsdale |
title_fullStr | Spreadsheet modeling and decision analysis a practical introduction to management science Cliff T. Ragsdale |
title_full_unstemmed | Spreadsheet modeling and decision analysis a practical introduction to management science Cliff T. Ragsdale |
title_short | Spreadsheet modeling and decision analysis |
title_sort | spreadsheet modeling and decision analysis a practical introduction to management science |
title_sub | a practical introduction to management science |
topic | Decision making Computer simulation Decision support systems Computer programs Electronic spreadsheets Management science Computer simulation Operations research Computer simulation Tabellenkalkulation (DE-588)4117161-5 gnd Management (DE-588)4037278-9 gnd Operations Research (DE-588)4043586-6 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Decision making Computer simulation Decision support systems Computer programs Electronic spreadsheets Management science Computer simulation Operations research Computer simulation Tabellenkalkulation Management Operations Research Computersimulation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009101344&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ragsdaleclifft spreadsheetmodelinganddecisionanalysisapracticalintroductiontomanagementscience |