Split and splitless injection for quantitative gas chromatography: concepts, processes, practical guidelines, sources of error
Gespeichert in:
Vorheriger Titel: | Grob, Konrad Split and splitless injection in capillary gas chromatography |
---|---|
1. Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
Wiley-VCH
2001
|
Ausgabe: | 4., completely rev. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 460 S. Ill., graph. Darst. 1 CD- ROM (12 cm) |
ISBN: | 3527298797 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013298345 | ||
003 | DE-604 | ||
005 | 20131010 | ||
007 | t | ||
008 | 000810s2001 ad|| |||| 00||| eng d | ||
016 | 7 | |a 960988777 |2 DE-101 | |
020 | |a 3527298797 |9 3-527-29879-7 | ||
035 | |a (OCoLC)43818943 | ||
035 | |a (DE-599)BVBBV013298345 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-355 |a DE-M49 |a DE-526 |a DE-634 |a DE-91S |a DE-11 | ||
050 | 0 | |a QD79.C45 | |
082 | 0 | |a 543/.0896 |2 21 | |
084 | |a VG 7400 |0 (DE-625)147205:253 |2 rvk | ||
084 | |a CHE 234f |2 stub | ||
100 | 1 | |a Grob, Konrad |e Verfasser |4 aut | |
245 | 1 | 0 | |a Split and splitless injection for quantitative gas chromatography |b concepts, processes, practical guidelines, sources of error |c Konrad Grob |
250 | |a 4., completely rev. ed. | ||
264 | 1 | |a Weinheim [u.a.] |b Wiley-VCH |c 2001 | |
300 | |a XX, 460 S. |b Ill., graph. Darst. |e 1 CD- ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Chemie |2 gtt | |
650 | 7 | |a Chromatografie |2 gtt | |
650 | 4 | |a Gas chromatography | |
650 | 4 | |a Gas chromatography |x Methodology | |
650 | 4 | |a Sample introduction (Chemistry) | |
650 | 0 | 7 | |a Kapillarsäule |0 (DE-588)4120545-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Injektor |g Chromatographie |0 (DE-588)4318465-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gaschromatographie |0 (DE-588)4019330-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kapillarsäule |0 (DE-588)4120545-5 |D s |
689 | 0 | 1 | |a Gaschromatographie |0 (DE-588)4019330-5 |D s |
689 | 0 | 2 | |a Injektor |g Chromatographie |0 (DE-588)4318465-0 |D s |
689 | 0 | |5 DE-604 | |
780 | 0 | 0 | |i 3. Auflage |a Grob, Konrad |t Split and splitless injection in capillary gas chromatography |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009066050&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009066050 |
Datensatz im Suchindex
_version_ | 1804128066487713792 |
---|---|
adam_text | Titel: Split and splitless injection for quantitative gas chromatography
Autor: Grob, Konrad
Jahr: 2001
Contents IX
Contents
A Syringe Injection into Hot Vaporizing Chambers
1. Introduction 1
1.1. Syringe Injection 1
1.2. Sample Evaporation inside the Needle 2
1.2.1. Inaccurate Sample Volume 2
1.2.2. Discrimination against High Boilers 3
1.2.3. Poor Reproducibility 4
1.2.4. Degradation of Labile Solutes 4
1.3. Conclusions 4
1.3.1. Fast Autosampler? 4
1.3.2. Suppressing Evaporation inside the Needle 5
1.3.3. Thermospray 5
2. Syringes 6
2.1. Plunger-in-Barrel Syringes 6
2.1.1. Plungers 6
2.1.2. Plunger Guides 7
2.2. Plunger-in-Needle Syringes 9
2.3. Syringe Needles 9
2.3.1. Dimensions 9
2.3.2. Needle Tips 10
2.3.3. Fixed versus Removable Needles 11
2.4. Cleaning of Syringes 11
2.4.1. Basic Rules 11
2.4.2. Cleaning Procedures 12
2.4.3. Plugged Needles 14
2.4.4. Blocked Plungers 14
3. Evaporation Inside the Needle 15
3.1. The Three-Step Model 15
3.2. Models of Evaporation inside the Needle 17
3.2.1. Distillation from the Needle 17
3.2.2. Gas Chromatography in the Needle 17
3.2.3. Ejection from the Needle 18
3.3. Conclusions Regarding Optimized Injection 19
4. How Much is Really Injected? 20
4.1. Interpretations of Sample Volume 20
4.2. Communicating Sample Volumes 21
4.3. Effects on Quantitative Analysis 21
X Contents
5. Syringe Needle Handling Minimizing Discrimination...
5.1. Definitions of Techniques -
5.2. Experimental Determination of Losses in the Needle
5.2.1. Method with Two Instruments
5.2.2. Experiment with a Single Instrument
5.2.3. Test During Routine Analysis
5.3. Comparison of Needle Handling Techniques
5.3.1. Filled Needle Injection
5.3.2. Slow Injection
5.3.3. Cool Needle Injection
5.3.4. Hot Needle Injection
5.3.5. Solvent Flush Injection
5.3.6. Air Plug Injection
5.3.7. Sandwich Injection
5.4. Heating the Needle after Injection?
5.5. Effect of Injecting Air
5.5.1. Concerns Regarding the Column
5.5.2. Detectors
5.5.3. Oxidized Sample
6. Dependence of Discrimination on Sample Volume
6.1. Experimental Results
6.2. Discussion of Mechanism
6.3. Conclusions
7. Solvent and Solutes
7.1. Volatility of the Solvent
7.2. Type of Solute
7.3. Adsorption in the Syringe Needle
7.4. Memory Effects Arising from the Syringe
8. Injector Temperature
8.1. Imposed Temperature
8.2. Temperature Gradient Towards the Septum
8.2.1. Critical Rear of Needle
8.2.2. Actual Temperature Profiles
8.2.3. Effect on Discrimination
8.2.4. Quantitative Results Differing from One Injector to Another
8.2.5. Conclusions
8.3. Thermostability of Septa
8.3.1. Upper Temperature Limit
8.3.2. Some Tips
9. Plunger-in-Needle Syringes
9.1. Accuracy of Sample Volume
9.2. Premature Expulsion
10. Possibilities of Avoiding Evaporation in the Needle
10.1. High Boiling Sample Matrix
10.1.1. Injector Temperature versus Solvent Boiling Point
10.1.2. Practical Aspects
22
22
24
.24
.25
.26
26
.27
.28
.28
.29
.32
.37
.37
37
38
.39
.39
.39
41
41
42
43
43
44
44
45
46
47
47
48
.49
.50
,.51
.53
..54
55
,.55
.56
57
57
57
59
59
,.59
,.61
Contents XI
10.2. Cooled Septum 62
10.3. Cooled Needle Technique 62
10.4. Fast Injection by Autosampler 62
10.5. Evaporation in the Injector 63
11. Summarizing Guidelines 64
References A 66
B Sample Evaporation in the Injector
1. Introduction 69
1.1. Problems Caused by Incomplete Evaporation 70
2. Solvent Evaporation - Heat Transfer 71
2.1. Available Evaporation Time 71
2.1.1. Band of Liquid 72
2.1.2. Nebulized Sample 72
2.1.3. Deposition on Surfaces 73
2.2. Amount of Heat Required 73
2.3. Sources of Heat 73
2.3.1. Carrier Gas 74
2.3.2. Packed Injector Liners 74
2.3.3. Heat from Liner Wall 75
2.4. Time Required for Heat Transfer 75
2.4.1. Transfer Within the Liner Wall 75
2.4.2. Transfer Through the Gas Phase 76
2.4.3. Residence Time Required for Evaporation 77
2.5. Conclusions 78
2.6. Experimental Results 79
2.6.1. Calculated and Measured Temperature Drop 79
2.6.2. Measurement of Evaporation Time via Split Flow Rate 80
3. Solvent Evaporation - Visual Observation 81
3.1. Experimental 81
3.2. Liquid Exiting the Syringe Needle 83
3.2.1. Injection through a Cool Needle 83
3.2.2. Injection through a Hot Needle 84
3.3. Three Scenarios of Evaporation in an Empty Vaporizing Chamber 87
3.3.1. Scenario 1 - Nebulization 87
3.3.2. Scenario 2 - Band of Liquid 88
3.3.3. Scenario 3- Liquid Splashing on the Liner Wall 90
3.4. First Conclusions 92
3.4.1. Fate of Sample Liquid Shot to the Bottom of the Liner 93
3.5. Stopping the Sample Liquid 96
3.5.1. Liner with Baffles 96
3.5.2. Cup or Jennings Liner 96
3.5.3. Glass Bead Liner 98
3.5.4. Cycloliner 98
3.5.5. Laminar Liner 99
XII Contents
99
3.5.6. Metal Liner
3.5.7. Summary - Stopping Liquid with Obstacles
3.5.8. Wool 1Q2
3.5.9. Glass Frits Q3
3.5.10. Carbofrit 103
3.5.11. Column Packing Material
3.6. Other Criteria for Evaluating Obstacles
3.7. Duration of Solvent Evaporation 105
4. Solute Evaporation
4.1. Evaporation in the Gas Phase
4.1.1. Some Key Terms 107
4.1.2. Dilution with Carrier Gas in an Empty Liner 109
4.1.3. Solute Concentrations in the Injector 110
4.1.4. Glass Wool Improving Evaporation? 112
4.1.5. Evaporation from Contaminants ^2
4.1.6. Prevention of Column Contamination 114
4.2. Evaporation from Surfaces
4.2.1. The Iodine Experiment 117
4.2.2. Dilution in Carrier Gas 118
4.2.3. GC Retentive Power of a Surface 119
4.2.4. Experimental Data 120
4.3. Conclusions on Injector Temperature 121
4.3.1. Thermospray Injection 121
4.3.2. Deposition on a Surface 121
5. Sample Degradation in the Injector 122
5.1. Degradation in the Injector or in the Column? 122
5.1.1. Methods for Distinction 123
5.2. Mechanisms of Solute Degradation 124
5.3. Countermeasures against Solute Degradation 125
5.4. Examples 126
5.4.1. Divinylcyclobutane 126
5.4.2. Carbamate Insecticides 126
5.4.3. Oxygenated Dibenzothiophenes 127
5.4.4. Mustard Oils 127
5.4.5. Chlorohydrin in a Drug Substance 127
5.4.6. Drugs Requiring an Empty Liner 127
5.4.7. Empty Liner for Methyl Esters of Hydroxy Fatty Acids 128
5.4.8. Brominated Alkanes 128
6. Retention and Adsorption in the Vaporizing Chamber 129
6.1. Adsorption in the Injector 729
6.1.1. Split Injection i2g
6.1.2. Splitless Injection 129
6.1.3. Column or Injector? 12g
6.1.4. Experimentally Observed Adsorption !!! ! !! 131
6.1.5. Variability of Adsorption 131
6.2. Retention in the Injector 132
Contents XIII
7. Deactivation of Liners and Packing Materials 133
7.1. Deactivation of the Liners? 133
7.2. Deactivation of Commercial Wool 133
7.3. Application-Related Testing for Inertness 134
7.4. More Comprehensive Testing Procedure 134
7.4.1. Design of the Test 135
7.4.2. Goals of the Test 135
7.4.3. Results 136
7.5. Silylation of Liners 138
7.5.1. Background 138
7.5.2. Wettability? 139
7.5.3. Method Recommended for Silylation of Liners 139
7.6. Silylation of Glass and Quartz Wool 140
7.7. Packings Coated with Stationary Phase 140
7.8. Deactivation by Sample Material 141
7.8.1. Unstable Deactivation 141
7.8.2. Heating Injector Overnight and at Weekends? 142
7.8.3. Carrier Gas Overnight? 142
7.8.4. Tests with Sample 142
8. Cleaning of Injector Liners 143
8.1. Washing with Strong Acids or Bases 143
8.2. Burning the Contaminants 144
8.3. Gentle Cleaning 144
References B 145
C Split Injection
1. Introduction 149
1.1. Principles of Split Injection 149
1.1.1. Basic Injector Design 149
1.2. Purposes of Sample Splitting 150
1.2.1. Injection of Concentrated Samples 150
1.2.2. Splitting to Generate Sharp Initial Bands 151
1.3. The Two Principles of Gas Supply 151
1.4. Historic Background of Split Injection 152
2. The Split Ratio 155
2.1. Definition 155
2.2. Adjustment/Determination of the Split Ratio 156
2.2.1. Determination of the Column Flow Rate 157
2.2.2. Adjustment of the Split Flow Rate 161
3. Sample Concentrations Suitable for Split Injection 163
3.1. Split Ratios Commonly Applied 153
3.2. Range of Suitable Concentrations 153
4. Initial Band Widths 164
4.1. Band Widths in Space and Time 164
XIV Contents
4.2. Factors Determining Initial Band Widths
4.3. Experimental Observation of Initial Band Shapes
4.3.1. Description of the Experiment
4.3.2. Subjects to Study 6g
4.3.3. Some Results
4.4. Effect on the Final Peak Width 1 *
4.4.1. Isothermal Runs
4.4.2. Chromatography Involving Temperature Increase 1/1
5. Split Injection for Fast Analysis 171
5.1. Prerequisites for Fast Analysis *72
5.2. Maximum Tolerable Initial Band Widths *73
5.3. Limits to the Sharpness of Initial Bands 173
5.4. Examples of Fast Analyses 174
6. Analysis Requiring Maximum Sensitivity *7®
6.1. Sharp Bands at Low Split Ratios *76
6.1.1. Headspace Analysis
6.1.2. Rapid Isothermal Runs at Elevated Column Temperature 177
6.2. Optimized Split Flow Rate *77
6.2.1. Peaks Growing Broad instead of High 178
6.2.2. Dilution in the Injector 178
6.2.3. Dilution in the Column 178
6.3. Maximum Vapor Concentration in the Injector 179
6.3.1. Sample Volume 179
6.3.2. Optimum Liner Volume 181
6.3.3. Position of the Column Entrance 182
6.3.4. Injection Point 182
6.3.5. Syringe Needles 183
6.4. Column Flow Rate 183
6.4.1. Low Split Ratios Resulting from High Column Flow Rates 184
6.4.2. Selection of the Carrier Gas 184
6.4.3. Selection of the Column 184
6.5. Summary: Maximum Sensitivity from Split Injection 185
7. High Split Ratios for Reducing the Sample Size 185
7.1. Diluent as a Hypothetical Sample ... 186
7.2. The Maximum Split Flow Rate 186
7.3. Small Sample Volumes 187
7.4. Low Column Flow Rate 189
7.5. High Column Capacity - Thick Films 189
7.6. Length of the Syringe Needle igo
7.7. Summarizing Guidelines
8. Problems Concerning the Split Ratio
8.1. Purposeful Search for Errors 192
8.1.1. Systematic Errors 192
8.1.2. Message from Standard Deviations 193
8.2. Pre-Set versus True Split Ratio 794
8.3. Mechanisms Causing the Split Ratio to Deviate ! . ! !!! 195
8.3.1. The Pressure Wave 195
8.3.2. Dependence of the Pressure Wave on Gas Regulation 196
Contents XV
8.3.3. Recondensation in the Column Inlet 198
8.3.4. Incomplete Evaporation 200
8.3.5. Cool Split Line 200
8.3.6. Charcoal Filters 201
8.3.7. Buffer Volumes 201
8.4. Minimizing the Deviation from the Pre-Set Split Ratio 202
8.4.1. Wide Injector Liner 202
8.4.2. Long Distance between Needle Exit and Column Entrance 202
8.4.3. Small Sample Volumes 203
8.4.4. Volatile Solvents 204
8.4.5. Packed Liner 204
8.5. Experimental Results 205
8.5.1. Results Concerning Pressure Wave 205
8.5.2. Course of the Pressure Wave 207
8.5.3. Data on True Split Ratios 208
8.6. Working Ruies to Prevent Systematic Errors 209
8.6.1. No Quantitation on the Basis of the Pre-Set Split Ratio 209
8.6.2. Use of the Internal Standard Method 209
8.6.3. Apply the External Standard Method with Caution 210
9. Problems Concerning Linearity of Splitting 213
9.1. Linear Splitting 213
9.2. First Cause of Non-Linear Splitting: Diffusion Speeds 214
9.2.1. Isokinetic Splitting 215
9.2.2. Insufficient Experimental Evidence 216
9.2.3. Conclusion 217
9.3. Second Cause: Incomplete Sample Evaporation ..217
9.3.1. Vapors and Droplets Split at Different Ratios 217
9.3.2. Neat Samples 217
9.3.3. Dilute Solutions in Solvents 219
9.3.4. Conclusion 220
9.4. Third Cause: Fluctuating Split Ratio 220
9.4.1. Variation of the Split Ratio 220
9.4.2. Pre-Separation of the Sample in the Injector 221
9.4.3. Cognac as an Example 222
9.5. Danger of Systematic Errors 223
10. Techniques for Improving Quantitative Analysis 225
10.1. Systematic Search for the Best Conditions 225
10.1.1. Strategy: Minimized Deviation 225
10.1.2. Determination of the Correct Result 226
10.2. Flash Evaporation 226
10.2.1. Concept 226
10.2.2. Selection of Conditions 227
10.2.3. Problems Arising from Aerosol Formation 229
10.2.4 Stop Flow Split Injection 230
10.2.5. An Experimental Result: Determination of Sucrose 230
10.2.6. Evaluation of Flash Evaporation 231
10.3. Evaporation in Packed Liners 231
10.3.1. Deposition of the Sample 232
10.3.2. Injector Packings 233
10.3.3. Optimization of Conditions 234
XVI Contents
234
10.3.4. Elution from the Packed Bed
10.3.5. PAHs as an Example ™
10.3.6. Ghost Peaks as a Result of Packing Bleed ^
10.3.7. Matrix Effects
10.4. High-Boiling Samples 239
10.4.1. Optimization of Conditions
10.4.2. Experiments by Schomburg
10.4.3. Application to Herbicide Analysis
10.5. Homogenization of Vapor Across the Liner
10.5.1. Obstacles Promoting Homogeneous Distribution 244
10.5.2. Chromatographic Experiment with Two Columns 244
10.5.3. Fatty Acid Methyl Esters -f4^
10.6. Two Case Studies
10.6.1. About a Dispute: the Methanol/2-Ethyl-1-Hexanol Mixture 246
10.6.2. Analysis of Alcoholic Beverages 248
11. General Evaluation of Split Injection 251
References 254
D Splitless Injection
1. Introduction 257
1.1. Concept 257
1.2. Historical Background 257
2. How to Perform Splitless Injection 261
2.1. Basic Steps of Splitless Injection 261
2.2. Closing the Split Exit 261
2.2.1. Mechanical Pressure Regulation 262
2.2.2. Flow/Back Pressure Regulation 263
2.3. Purging the Injector 263
2.3.1. Duration of the Splitless Period 264
2.3.2. Purge Flow Rate Required 265
2.4. Septum Purge 265
2.5. Ghost Peaks from Septum Material 265
2.6. Septum Purge During the Splitless Period 266
2.6.1. Arguments in Favor of Closing 266
2.6.2. Sample Material Entering the Carrier Gas Supply Line 267
2.6.3. Reasons to Leave the Septum Purge Open 268
3. Sample Volumes Suitable for Splitless Injection 269
3.1. Calculated Volumes of Solvent Vapor 269
3.2. Determination of Injector Capacity 270
3.2.1. Determination from Peak Sizes ... .270
3.2.2. Detection of Solvent in the Septum Purge 270
3.2.3. Measurement of Losses through the Septum Purge 272
3.3. Results 272
3.3.1. Pressure Wave versus Diffusion 273
3.3.2. Volume of the Vaporizing Chamber 273
Contents XVII
3.3.3. Length of the Syringe Needle 274
3.3.4. Inlet Pressure 275
3.3.5. Solvent Recondensation 275
3.3.6. Volume of Vapor from Solvent 275
3.3.7. Liners with a Constriction at the Top? 277
3.3.8. Valve to prevent Backflow 278
3.4. Pressure Increase during Splitless Injection 279
3.4.1. Auto-Regulation? 279
3.5. Slow Injection? 280
3.6. Conclusions 281
4. Injection of Large Volumes 282
4.1. Overflow Technique 282
4.1.1. Evaporation from Cool Surfaces 282
4.1.2. Injection Rate 284
4.1.3. Keeping the Liquid in Place 284
4.1.4. Retention of Volatile Components 285
4.1.5. Desorption of Solute Material 286
4.1.6. Instrumental Requirements 287
4.1.7. Syringe Needles 287
4.1.8. Flow Rate through the Septum Purge 287
4.1.9. Column Temperature During Injection 288
4.1.10. Examples 288
4.2. Precolumn Solvent Splitting 289
4.3. Evaluation 291
4.3.1. Overflow Technique 291
4.3.2. Solvent Splitting 291
5. Sample Transfer into the Column 292
5.1. Spreading in the Vaporizing Chamber 292
5.1.1. Observations with the Iodine Experiment 292
5.2. The Transfer Process 293
5.3. Flow Rate and Duration of the Splitless Period 294
5.3.1. Carrier Gas Flow Rates 295
5.3.2. Liner Bore 296
5.3.3. Diffusion Speeds 297
5.4. Accelerated Transfer by Pressure Increase 298
5.4.1. Principles 298
5.4.2. Advantages 299
5.4.3. Extent of Pressure Increase 300
5.4.4. Duration of the Pressure Pulse 302
5.4.5. Accentuated Solvent Recondensation 303
5.4.6. Recommendations 304
5.5. Accelerated Transfer by Solvent Recondensation 304
5.5.1. Efficiency of the Recondensation Effect 305
5.5.2. Experimental Results 305
5.6. Tests on Completeness of Sample Transfer 306
5.6.1. Rapid Check via Accentuated Transfer Conditions 307
5.6.2. Check via On-Column Injection 307
5.7. Fast GC/Narrow Bore Columns 308
5.8. Splitless Injection for SPME 310
XVIII Contents
311
5.9. Conclusions * * 212
5.9.1. Diameter of the Vaporizing Chamber
5.9.2. Duration of the Splitless Period
313
6. Problems with Quantitative Analysis
6.1. List of Problems Discussed in Other Parts 313
6.1.1. Selective Evaporation from the Syringe Needle
6.1.2. Poor Sample Evaporation ^
6.1.3. Injector Overloading
6.1.4. Incomplete Transfer of Sample Vapor
6.1.5. Adsorption and Retention in the Vaporizing Chamber 316
6.1.6. Degradation of Labile Solutes 31®
6.2. Enhancing Matrix Effects
6.2.1. Definition 316
6.2.2. Description of the Effect 3^
6.2.3. Effect on Quantitative Analysis 318
6.2.4. Proposed Solutions 320
6.3. Reducing Matrix Effects 323
6.3.1. Contaminants Simulated with DC-200 323
6.3.2. Triglycerides in the Sample Matrix 325
6.3.3. Interpretation of the Experimental Results 327
6.3.4. Effects on Quantitative Analysis 328
6.3.5. Minimizing the Matrix Effect 330
6.3.6. Glass Wool in the Liner? 332
7. Reconcentration of Initial Bands 334
7.1. Distinction between the Two Band Broadening Effects 334
7.1.1. ... in Space 334
7.1.2. ... in Time 335
7.2. Band Broadening in Time 337
7.2.1. Shape of the Band 337
7.3. Reconcentration by Cold Trapping 339
7.3.1. Principle 339
7.3.2. Reconcentrating Power 340
7.3.3. Reconcentration Required 340
7.3.4. Practice of Cold Trapping 341
7.3.5. Problems with Disturbed Baselines 344
7.3.6. Ghost Peaks 346
7.3.7. Application of Cold Trapping 350
7.4. Reconcentration by Solvent Effects 350
7.4.1. Recondensation of Solvent 351
7.4.2. Requirements for Solvent Effects 354
7.4.3. Effects on Retention Times ....356
7.5. Band Broadening in Space m 357
7.5.1. Shape of the Initial Band 357
7.5.2. Extent of Peak Distortion 361
7.5.3. Avoidance of Peak Distortion 335
7.6. Uncoated Precolumns - Retention Gap Techniques
7.6.1. Reconcentration of Bands Broadened in Space 366
7.6.2. Uncoated Precolumn as Waste Bin ... 368
7.6.3. Press-Fit Connections 372
Contents XIX
7.7. Examples of the Use of Reconcentration Effects 374
7.7.1. Dioctyl Phthalate 375
7.7.2. Traces of Tetrachloroethylene 375
7.7.3. Extraction of Water with Pentane 375
7.7.4. Semivolatiles in Cigarette Smoke 376
7.7.5. Solvent Residues in Pharmaceutical Preparations 377
7.7.6. Headspace Analysis 377
7.7.7. Solvent Effects at Elevated Column Temperatures 378
8. Related Injection Methods 379
8.1. Direct Injection 379
8.1.1. Injector Design 379
8.1.2. On-Column Injection? 381
8.1.3. Injection of Large Volumes 382
8.1.4. Evaluation of Direct Injection 383
8.2. Solid Injection 385
8.2.1. Moving Needle Injection 385
8.2.2. Direct Sample Introduction 386
8.3. Injector-Internal Headspace Analysis 388
9. General Evaluation of Splitless Injection 391
9.1. Data on Precision from the Literature........ 391
9.1.1. Limited Utility of Literature Data 394
9.1.2. Message to a Lawyer 394
9.2. Comparison with Alternative Techniques 395
9.2.1. On-Column Injection 395
9.2.2. Splitless Injection for Analysis of Dirty Samples 396
9.2.3. PTV Splitless Injection 397
9.2.4. Outlook 397
References D 398
E Injector Design
1. Vaporizing Chamber 406
1.1. Classical Teaching 406
1.1.1. Longitudinal Axis 407
1.1.2. Internal Diameter for Splitless Injection 408
1.1.3. Internal Diameter for Split Injection 409
1.1.4. Conclusions 410
1.1.5. Column Installation 410
1.2. Newer Developments 412
1.2.1. Pressure and Flow Programming 412
1.2.2. Fast Autosampler 412
1.3. Room for Improvement? - 413
1.3.1. Preference forThermospray or Band Formation? 414
1.3.2. Optimized Thermospray 414
1.3.3. Optimized Injection with Band Formation 414
XX Contents
2. Surroundings of the Vaporizing Chamber
2.1. Seal between Liner and Injector Body 416
2.2. Accessible Volumes around the Vaporizing Chamber 420
2.2.1. Reversed Split Flow? 422
2.3. Septum ^
2.3.1. Required Tightness 423
2.3.2. Septum Bleed 424
2.3.3. Effect of Particles on Sample Evaporation 425
2.3.4. Recommendations 426
2.3.5. Merlin Microseal 427
2.4. Heating of the Injector - — 427
2.4.1. Injector Head * 428
2.4.2. Base of the Injector 429
3. Autosamplers 429
3.7. Injection Speed 429
3.1.1. Injection Rate 430
3.1.2. Adjustable Depth of the Needle 430
4. The Gas Regulation Systems 431
4.1. Mechanical Pressure Regulation/Flow Restriction 431
4.1.1. Pressure Regulators 432
4.1.2. Manometers 434
4.2. Mechanical Flow/Backpressure Regulation 435
4.2.1. Comparison of the Two Systems 436
4.3. Electronic Regulation Systems... 437
4.3.1. Flow/Backpressure Regulation 437
4.3.2. Pressure Regulation/Flow Restriction 438
4.4. Charcoal Filters in the Split Outlet 439
4.4.1. Advantages 439
4.4.2. Drawbacks 440
4.4.3. Suitable Size 440
4.5. Septum Purge 447
References E 443
Appendix 1 445
Selection of the Injection Technique 445
Appendix 2
Selection of Conditions for Classical Split and Splitless Injection 446
Appendix 3
448
Glossary of the Most Important Terms Used in the Text 448
Subject Index
453
|
any_adam_object | 1 |
author | Grob, Konrad |
author_facet | Grob, Konrad |
author_role | aut |
author_sort | Grob, Konrad |
author_variant | k g kg |
building | Verbundindex |
bvnumber | BV013298345 |
callnumber-first | Q - Science |
callnumber-label | QD79 |
callnumber-raw | QD79.C45 |
callnumber-search | QD79.C45 |
callnumber-sort | QD 279 C45 |
callnumber-subject | QD - Chemistry |
classification_rvk | VG 7400 |
classification_tum | CHE 234f |
ctrlnum | (OCoLC)43818943 (DE-599)BVBBV013298345 |
dewey-full | 543/.0896 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543/.0896 |
dewey-search | 543/.0896 |
dewey-sort | 3543 3896 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
edition | 4., completely rev. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02031nam a2200493 c 4500</leader><controlfield tag="001">BV013298345</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131010 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000810s2001 ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960988777</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527298797</subfield><subfield code="9">3-527-29879-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43818943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013298345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91S</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD79.C45</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">543/.0896</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 7400</subfield><subfield code="0">(DE-625)147205:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 234f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grob, Konrad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Split and splitless injection for quantitative gas chromatography</subfield><subfield code="b">concepts, processes, practical guidelines, sources of error</subfield><subfield code="c">Konrad Grob</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4., completely rev. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 460 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD- ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chromatografie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas chromatography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas chromatography</subfield><subfield code="x">Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sample introduction (Chemistry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapillarsäule</subfield><subfield code="0">(DE-588)4120545-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Injektor</subfield><subfield code="g">Chromatographie</subfield><subfield code="0">(DE-588)4318465-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gaschromatographie</subfield><subfield code="0">(DE-588)4019330-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kapillarsäule</subfield><subfield code="0">(DE-588)4120545-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gaschromatographie</subfield><subfield code="0">(DE-588)4019330-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Injektor</subfield><subfield code="g">Chromatographie</subfield><subfield code="0">(DE-588)4318465-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">3. Auflage</subfield><subfield code="a">Grob, Konrad</subfield><subfield code="t">Split and splitless injection in capillary gas chromatography</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009066050&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009066050</subfield></datafield></record></collection> |
id | DE-604.BV013298345 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:43:20Z |
institution | BVB |
isbn | 3527298797 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009066050 |
oclc_num | 43818943 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-M49 DE-BY-TUM DE-526 DE-634 DE-91S DE-BY-TUM DE-11 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-M49 DE-BY-TUM DE-526 DE-634 DE-91S DE-BY-TUM DE-11 |
physical | XX, 460 S. Ill., graph. Darst. 1 CD- ROM (12 cm) |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Grob, Konrad Verfasser aut Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error Konrad Grob 4., completely rev. ed. Weinheim [u.a.] Wiley-VCH 2001 XX, 460 S. Ill., graph. Darst. 1 CD- ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Chemie gtt Chromatografie gtt Gas chromatography Gas chromatography Methodology Sample introduction (Chemistry) Kapillarsäule (DE-588)4120545-5 gnd rswk-swf Injektor Chromatographie (DE-588)4318465-0 gnd rswk-swf Gaschromatographie (DE-588)4019330-5 gnd rswk-swf Kapillarsäule (DE-588)4120545-5 s Gaschromatographie (DE-588)4019330-5 s Injektor Chromatographie (DE-588)4318465-0 s DE-604 3. Auflage Grob, Konrad Split and splitless injection in capillary gas chromatography HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009066050&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grob, Konrad Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error Chemie gtt Chromatografie gtt Gas chromatography Gas chromatography Methodology Sample introduction (Chemistry) Kapillarsäule (DE-588)4120545-5 gnd Injektor Chromatographie (DE-588)4318465-0 gnd Gaschromatographie (DE-588)4019330-5 gnd |
subject_GND | (DE-588)4120545-5 (DE-588)4318465-0 (DE-588)4019330-5 |
title | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error |
title_auth | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error |
title_exact_search | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error |
title_full | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error Konrad Grob |
title_fullStr | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error Konrad Grob |
title_full_unstemmed | Split and splitless injection for quantitative gas chromatography concepts, processes, practical guidelines, sources of error Konrad Grob |
title_old | Grob, Konrad Split and splitless injection in capillary gas chromatography |
title_short | Split and splitless injection for quantitative gas chromatography |
title_sort | split and splitless injection for quantitative gas chromatography concepts processes practical guidelines sources of error |
title_sub | concepts, processes, practical guidelines, sources of error |
topic | Chemie gtt Chromatografie gtt Gas chromatography Gas chromatography Methodology Sample introduction (Chemistry) Kapillarsäule (DE-588)4120545-5 gnd Injektor Chromatographie (DE-588)4318465-0 gnd Gaschromatographie (DE-588)4019330-5 gnd |
topic_facet | Chemie Chromatografie Gas chromatography Gas chromatography Methodology Sample introduction (Chemistry) Kapillarsäule Injektor Chromatographie Gaschromatographie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009066050&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grobkonrad splitandsplitlessinjectionforquantitativegaschromatographyconceptsprocessespracticalguidelinessourcesoferror |