Quantum mechanics:
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
New York [u.a.]
Springer
2000
|
Series: | Graduate texts in contemporary physics
|
Subjects: | |
Online Access: | Inhaltsverzeichnis |
Physical Description: | XIX, 760 S. Ill., graph. Darst. |
ISBN: | 0387989196 |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013290845 | ||
003 | DE-604 | ||
005 | 20150626 | ||
007 | t| | ||
008 | 000801s2000 gw ad|| |||| 00||| eng d | ||
016 | 7 | |a 959412794 |2 DE-101 | |
020 | |a 0387989196 |c Pp. : DM 169.00 |9 0-387-98919-6 | ||
035 | |a (OCoLC)42072213 | ||
035 | |a (DE-599)BVBBV013290845 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-824 |a DE-20 |a DE-91G |a DE-19 |a DE-634 |a DE-11 | ||
050 | 0 | |a QC174.12 | |
082 | 0 | |a 530.12 |2 21 | |
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a PHY 020f |2 stub | ||
100 | 1 | |a Hecht, Karl Theodor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum mechanics |c K. T. Hecht |
264 | 1 | |a New York [u.a.] |b Springer |c 2000 | |
300 | |a XIX, 760 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Graduate texts in contemporary physics | |
650 | 4 | |a Théorie quantique | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009061710&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009061710 |
Record in the Search Index
_version_ | 1828843462959562752 |
---|---|
adam_text |
K
.T. HECHT
QUANTUM MECHANICS
PREFACE
V
I INTRODUCTION TO QUANTUM MECHANICS
1
1 BACKGROUND
: THE DUALITY OF NATURE
3
A
THE YOUNG DOUBLE SLIT EXPERIMENT
4
B
MORE DETAILED ANALYSIS OF THE DOUBLE SLIT EXPERIMENT
4
C
COMPLEMENTARY EXPERIMENTAL SETUP
6
2 THE MOTION OF WAVE PACKETS
: FOURIER ANALYSIS
8
A
FOURIER SERIES
8
B
FOURIER INTEGRALS
1
0
C
THE DIRAC DELTA FUNCTION
1
1
D
PROPERTIES OF THE DIRAC DELTA FUNCTION
1
3
E
FOURIER INTEGRALS IN THREE DIMENSIONS
1
4
F
THE OPERATION
1AE
X
1
5
G
WAVE PACKETS
1
5
H
PROPAGATION OF WAVE PACKETS
: THE WAVE EQUATION
1
7
3 THE SCHROEDINGER WAVE EQUATION AND PROBABILITY INTERPRETATION
1
9
A
THE WAVE EQUATION
1
9
B
THE PROBABILITY AXIOMS
2
0
C
THE CALCULATION OF AVERAGE VALUES OF DYNAMICAL QUANTITIES
.
2
3
D
PRECISE STATEMENT OF THE UNCERTAINTY PRINCIPLE
24
E
EHRENFEST'S THEOREM
: EQUATIONS OF MOTION
2
6
F
OPERATIONAL CALCULUS, THE LINEAR OPERATORS OF QUANTUM
MECHANICS, HILBERT SPACE
2
7
G
THE HEISENBERG COMMUTATION RELATIONS
2
9
H
GENERALIZED
EHRENFEST
THEOREM
3
0
I
CONSERVATION THEOREMS: ANGULAR MOMENTUM, RUNGE-LENZ
VECTOR, PARITY
3
1
J
QUANTUM-MECHANICAL HAMILTONIANS FOR MORE GENERAL SYSTEMS
3
3
K
THE SCHROEDINGER EQUATION FOR AN N-PARTICLE SYSTEM
3
4
L
THE SCHROEDINGER EQUATION IN CURVILINEAR COORDINATES
3
5
PROBLEMS
3
6
4 SCHROEDINGER THEORY
: THE EXISTENCE OF DISCRETE ENERGY LEVELS
39
A
THE TIME-INDEPENDENT SCHROEDINGER EQUATION
3
9
B
THE SIMPLE, ATTRACTIVE SQUARE WELL
40
.
SQUARE WELL PROBLEMS
4
5
C
THE PERIODIC SQUARE WELL POTENTIAL
4
8
D
THE EXISTENCE OF DISCRETE ENERGY LEVELS
: GENERAL V (X)
.
. 56
E
THE ENERGY EIGENVALUE PROBLEM
: GENERAL
6
0
F
A SPECIFIC EXAMPLE: THE ONE-DIMENSIONAL HARMONIC
OSCILLATOR
6
2
5 HARMONIC OSCILLATOR CALCULATIONS
6
5
A
THE BARGMANN TRANSFORM
6
5
B
COMPLETENESS RELATION
6
6
C
A SECOND USEFUL APPLICATION
: THE MATRIX
(X)NM
6
7
PROBLEMS
6
8
6 FURTHER INTERPRETATION OF THE WAVE FUNCTION
7
5
A
APPLICATION 1
: TUNNELING THROUGH A BARRIER
7
6
B
APPLICATION 2
: TIME-DEPENDENCE OF A GENERAL OSCILLATOR Q
7
8
C
MATRIX REPRESENTATIONS
7
9
D
HEISENBERG MATRIX MECHANICS
8
0
7 THE EIGENVALUE PROBLEM
8
2
A
THE FACTORIZATION METHOD
: LADDER OPERATORS
8
4
8 SPHERICAL HARMONICS, ORBITAL ANGULAR MOMENTUM
9
2
A
ANGULAR MOMENTUM OPERATORS
9
3
9 2-STEP OPERATORS FOR THE 6 EQUATION
9
6
10 THE RADIAL FUNCTIONS FOR THE HYDROGENIC ATOM
105
11 SHAPE-INVARIANT POTENTIALS
: SOLUBLE ONE-DIMENSIONAL POTENTIAL
PROBLEMS
108
A
SHAPE-INVARIANT POTENTIALS
11
0
B
A SPECIFIC EXAMPLE
11
0
C
SOLUBLE ONE-DIMENSIONAL POTENTIAL PROBLEMS
11
4
PROBLEMS
12
2
12 THE DARBOUX METHOD
: SUPERSYMMETRIC PARTNER POTENTIALS
130
PROBLEMS
13
4
13 THE VECTOR SPACE INTERPRETATION OF QUANTUM-MECHANICAL SYSTEMS 13
8
A
DIFFERENT "REPRESENTATIONS
"
OF THE STATE OF
A
QUANTUM-MECHANICAL SYSTEM
13
8
B
THE DIRAC NOTATION
14
1
C
NOTATIONAL ABBREVIATIONS
14
4
14 THE ANGULAR MOMENTUM EIGENVALUE PROBLEM (REVISITED)
14
5
A
SIMULTANEOUS EIGENVECTORS OF COMMUTING HERMITIA
N
OPERATORS
14
5
B
THE ANGULAR MOMENTUM ALGEBRA
14
7
C
GENERAL ANGULAR MOMENTA
14
8
15 RIGID ROTATORS
: MOLECULAR ROTATIONAL SPECTRA
15
2
A
THE DIATOMIC MOLECULE RIGID ROTATOR
15
2
B
THE POLYATOMIC MOLECULE RIGID ROTATOR
15
3
PROBLEMS
15
8
16 TRANSFORMATION THEORY
15
9
A
GENERAL
15
9
B
NOTE ON GENERATORS OF UNITARY OPERATORS AND TH
E
TRANSFORMATION
UHU'
=
H'
16
1
17 ANOTHER EXAMPLE
: SUCCESSIVE POLARIZATION FILTERS FOR BEAMS OF
SPIN S
=
PARTICLES
16
3
18 TRANSFORMATION THEORY FOR SYSTEMS WITH CONTINUOUS SPECTRA
16
7
A
THE TRANSLATION OPERATOR
16
8
B
COORDINATE REPRESENTATION MATRIX ELEMENTS OF
P
X
16
9
C
CALCULATION OF THE TRANSFORMATION MATRIX (YO I
PO) YY YY YY YY YY
17
1
19 TIME-DEPENDENCE OF STATE VECTORS, ALGEBRAIC TECHNIQUES
,
COHERENT STATES
17
3
A
RECAPITULATION
: THE POSTULATES OF QUANTUM THEORY
17
3
B
TIME EVOLUTION OF A STATE I,/F )
175
C
THE HEISENBERG TREATMENT OF THE ONE-DIMENSIONAL HARMONI
C
OSCILLATOR: OSCILLATOR ANNIHILATION AND CREATION OPERATORS
17
7
D
OSCILLATOR COHERENT STATES
18
0
E
ANGULAR MOMENTUM COHERENT STATES
18
7
PROBLEMS
19
2
II TIME-INDEPENDENT PERTURBATION THEORY
201
20 PERTURBATION THEORY
203
A
INTRODUCTORY REMARKS
20
3
B
TRANSITION PROBABILITIES
20
4
PROBLEMS
20
6
21 STATIONARY-STATE PERTURBATION THEORY
208
A
RAYLEIGH-SCHROEDINGER EXPANSION
20
8
B
CASE 1
: NONDEGENERATE STATE
20
9
C
SECOND-ORDER CORRECTIONS
21
1
D
THE WIGNER-BRILLOUIN EXPANSION
21
3
22 EXAMPLE 1
: THE SLIGHTLY ANHARMONIC OSCILLATOR
21
5
23 PERTURBATION THEORY FOR DEGENERATE LEVELS
22
1
A
DIAGONALIZATION OF H
(1)
:
TRANSFORMATION TO PROPE
R
ZEROTH-ORDER BASIS
22
1
B
THREE CASES OF DEGENERATE LEVELS
22
2
C
HIGHER ORDER CORRECTIONS WITH PROPER ZEROTH-ORDER BASIS
22
3
D
APPLICATION 1
: STARK EFFECT IN THE DIATOMIC MOLECULE RIGI
D
ROTATOR
22
4
E
APPLICATION 2
: STARK EFFECT IN THE HYDROGEN ATOM
22
7
24 THE CASE OF NEARLY DEGENERATE LEVELS
22
9
A
PERTURBATION THEORY BY SIMILARITY TRANSFORMATION
22
9
B
AN EXAMPLE
: TWO COUPLED HARMONIC OSCILLATORS WITH
2CO2
23
2
25 MAGNETIC FIELD PERTURBATIONS
23
5
A
THE QUANTUM MECHANICS OF A FREE, CHARGED PARTICLE IN
A
MAGNETIC FIELD
23
5
B
AHARANOV-BOHM EFFECT
23
6
C
ZEEMAN AND PASCHEN-BACK EFFECTS IN ATOMS
23
8
D
SPIN-ORBIT COUPLING AND THOMAS PRECESSION
24
0
26 FINE STRUCTURE AND ZEEMAN PERTURBATIONS IN ALKALI ATOMS
24
3
PROBLEMS
247
III ANGULAR MOMENTUM THEORY
26
1
27 ANGULAR MOMENTUM COUPLING THEORY
263
A
GENERAL PROPERTIES OF VECTOR COUPLING COEFFICIENTS
26
5
B
METHODS OF CALCULATION
26
6
28 SYMMETRY PROPERTIES OF CLEBSCH-GORDAN COEFFICIENTS
269
29 INVARIANCE OF PHYSICAL SYSTEMS UNDER ROTATIONS
273
A
ROTATION OPERATORS
27
4
B
GENERAL ROTATIONS,
R(A, SS, Y)
27
6
C
TRANSFORMATION OF ANGULAR MOMENTUM EIGENVECTORS O
R
EIGENFUNCTIONS
27
7
D
GENERAL EXPRESSION FOR THE ROTATION MATRICES
27
9
E
ROTATION OPERATORS AND ANGULAR MOMENTUM COHERENT STATES
28
2
30 THE CLEBSCH-GORDAN SERIES
285
A
ADDITION THEOREM FOR SPHERICAL HARMONICS
28
6
B
INTEGRALS OF D FUNCTIONS
28
8
PROBLEMS
29
1
31 SPHERICAL TENSOR OPERATORS
29
4
A
DEFINITION
: SPHERICAL TENSORS
29
5
B
ALTERNATIVE DEFINITION
29
5
C
BUILD-UP PROCESS
29
6
32 THE WIGNER-ECKART THEOREM
29
9
A
DIAGONAL MATRIX ELEMENTS OF VECTOR OPERATORS
30
0
B
PROOF OF THE WIGNER-ECKART THEOREM
30
1
33 NUCLEAR HYPERFINE STRUCTURE IN ONE-ELECTRON ATOMS
30
3
PROBLEMS
30
9
*34 ANGULAR MOMENTUM RECOUPLING
: MATRIX ELEMENTS OF COUPLE
D
TENSOR OPERATORS IN AN ANGULAR MOMENTUM COUPLED BASIS
31
2
A
THE RECOUPLING OF THREE ANGULAR MOMENTA
: RACA
H
COEFFICIENTS OR
6
-J SYMBOLS
31
2
B
RELATIONS BETWEEN U COEFFICIENTS AND CLEBSCH-GORDA
N
COEFFICIENTS
31
4
C
ALTERNATE FORMS FOR THE RECOUPLING COEFFICIENTS FOR THRE
E
ANGULAR MOMENTA
31
8
D
MATRIX ELEMENT OF
(U
K
(L)
YY
V
K
(2))
IN A VECTOR-COUPLED BASIS
32
0
E
RECOUPLING OF FOUR ANGULAR MOMENTA
: 9-J SYMBOLS
32
1
F
MATRIX ELEMENT OF A COUPLED TENSOR OPERATOR
,
[UK
'(1) X V
K2
(2)]G
IN A VECTOR-COUPLED BASIS
325
G
AN APPLICATION
: THE NUCLEAR HYPERFINE INTERACTION IN
A
ONE-ELECTRON ATOM REVISITED
32
9
*35 PERTURBED COULOMB PROBLEMS VIA SO(2,1) ALGEBRA
332
A
PERTURBED COULOMB PROBLEMS: THE CONVENTIONAL APPROACH
.
332
B
THE RUNGE-LENZ VECTOR AS AN STEP OPERATOR AND THE SO(4
)
ALGEBRA OF THE COULOMB PROBLEM
33
4
C
THE SO(2,1) ALGEBRA
33
8
D
THE DILATION PROPERTY OF THE OPERATOR, T
2
33
9
E
THE ZEROTH-ORDER ENERGY EIGENVALUE PROBLEM FOR TH
E
HYDROGEN ATOM: STRETCHED STATES
34
0
F
PERTURBATIONS OF THE COULOMB PROBLEM
34
4
G
AN APPLICATION
: COULOMB POTENTIAL WITH A PERTURBING LINEAR
POTENTIAL: CHARMONIUM
34
6
H
MATRIX ELEMENTS OF THE VECTOR OPERATORS, AND
R P",
IN TH
E
STRETCHED BASIS
34
7
I
SECOND-ORDER STARK EFFECT OF THE HYDROGEN GROUND STAT
E
REVISITED
35
0
J
THE CALCULATION OF OFF-DIAGONAL MATRIX ELEMENTS VIA TH
E
STRETCHED HYDROGENIC BASIS
35
1
K
FINAL REMARKS
35
2
PROBLEMS
35
2
36 THE WKB APPROXIMATION
35
4
A
THE KRAMERS CONNECTION FORMULAE
35
7
B
APPENDIX
: DERIVATION OF THE CONNECTION FORMULAE
35
7
37 APPLICATIONS OF THE WKB APPROXIMATION
36
3
A
THE WILSON-SOMMERFELD QUANTIZATION RULES OF THE PRE-192
5
QUANTUM THEORY
36
3
B
APPLICATION 2
: THE TWO-MINIMUM PROBLEM: THE INVERSION
SPLITTING OF THE LEVELS OF THE AMMONIA MOLECULE
36
5
PROBLEMS
36
8
IV SYSTEMS OF IDENTICAL PARTICLES
37
9
38 THE TWO-ELECTRON ATOM
38
1
A
PERTURBATION THEORY FOR A TWO-ELECTRON ATOM
38
4
39 N-IDENTICAL PARTICLE STATES
38
9
40 THE VARIATIONAL METHOD
39
3
A
PROOF OF THE VARIATIONAL THEOREM
39
4
B
BOUNDS ON THE ACCURACY OF THE VARIATIONAL METHOD
395
C
AN EXAMPLE
: THE GROUND-STATE ENERGY OF THE HE ATOM
39
5
D
THE RITZ VARIATIONAL METHOD
39
7
V SCATTERING THEORY
39
9
41 INTRODUCTION TO SCATTERING THEORY
401
A
POTENTIAL SCATTERING
40
1
B
SPHERICAL BESSEL FUNCTIONS
40
9
*MATHEMATICAL APPENDIX TO CHAPTER 41
. SPHERICAL BESSEL FUNCTIONS
41
2
42 THE RAYLEIGH-FAXEN-HOLTZMARK PARTIAL WAVE EXPANSION
: PHAS
E
SHIFT METHOD
419
*MATHEMATICAL APPENDIX TO CHAPTER 42
42
6
43 A SPECIFIC EXAMPLE
: SCATTERING FROM SPHERICAL SQUARE WEL
L
POTENTIALS
436
A
HARD
SPHERE SCATTERING
43
8
B
THE GENERAL CASE
: ARBITRARY VO
44
1
44 SCATTERING RESONANCES
: LOW-ENERGY SCATTERING
44
3
A
POTENTIAL RESONANCES
44
3
B
LOW-ENERGY SCATTERING FOR GENERAL
V (R)
:
SCATTERING LENGTH
44
4
PROBLEMS
44
8
45 INTEGRAL EQUATION FOR TWO-BODY RELATIVE MOTION
: SCATTERIN
G
GREEN'S FUNCTIONS IN COORDINATE REPRESENTATION
45
0
A
BOX NORMALIZATION
: DISCRETE SPECTRUM
45
0
B
CONTINUUM GREEN'S FUNCTION
45
2
C
SUMMARY
45
7
D
CLOSING REMARKS
45
8
*MATHEMATICAL APPENDIX TO CHAPTER 45
45
8
46 THE BORN APPROXIMATION
46
2
A
APPLICATION
: THE YUKAWA POTENTIAL
46
4
B
THE SCREENED COULOMB POTENTIAL
46
4
C
IDENTICAL PARTICLE COULOMB SCATTERING
46
5
*MATHEMATICAL APPENDIX TO CHAPTER 46
46
8
PROBLEMS
47
4
47 OPERATOR FORM OF SCATTERING GREEN'S FUNCTION AND THE INTEGRA
L
EQUATION FOR THE SCATTERING PROBLEM
47
7
A
THE LIPPMANN-SCHWINGER EQUATION
479
48 INELASTIC SCATTERING PROCESSES AND REARRANGEMENT COLLISIONS
481
A
INELASTIC SCATTERING PROCESSES
48
1
B
REARRANGEMENT COLLISIONS
48
3
49 DIFFERENTIAL SCATTERING CROSS SECTIONS FOR REARRANGEMEN
T
COLLISIONS: BORN APPROXIMATION
488
PROBLEMS
49
1
50 A SPECIFIC EXAMPLE OF A REARRANGEMENT COLLISION
: THE
(D, P
)
REACTION ON NUCLEUS A
493
51 THE S MATRIX
50
3
A
THE T MATRIX
50
5
PROBLEMS
50
6
52 SCATTERING THEORY FOR PARTICLES WITH SPIN
509
A
SCATTERING OF A POINT PARTICLE WITH SPIN FROM A SPINLESS TARGE
T
PARTICLE
50
9
B
FIRST BORN APPROXIMATION
51
2
53 SCATTERING OF SPIN PARTICLES FROM SPINLESS TARGET
: PARTIAL WAV
E
DECOMPOSITION
51
4
54 THE POLARIZATION VECTOR
51
8
A
POLARIZATION OF THE SCATTERED BEAM
51
9
55 DENSITY MATRICES
52
2
A
DETECTION OF POLARIZATION VIA DOUBLE SCATTERING
52
5
B
DIFFERENTIAL SCATTERING CROSS SECTION OF A BEAM WITH ARBITRAR
Y
INCIDENT POLARIZATION
52
7
C
GENERALIZATIONS TO MORE COMPLICATED CASES
52
7
56 ISOSPIN
52
9
A
SPECTRA OF TWO-VALENCE NUCLEON NUCLEI
53
1
PROBLEMS
53
4
VI TIME-DEPENDENT PERTURBATION THEORY
53
9
57 TIME-DEPENDENT PERTURBATION EXPANSION
54
1
A
FIRST-ORDER PROBABILITY AMPLITUDE
: THE GOLDEN RULE
54
4
B
APPLICATION
: THE FIRST BORN APPROXIMATION OF SCATTERIN
G
THEORY REVISITED
54
7
C
BOX NORMALIZATION
: AN ALTERNATIVE APPROACH
54
8
D
SECOND-ORDER EFFECTS
54
9
E
CASE 2
: A PERIODIC PERTURBATION
551
58 OSCILLATING MAGNETIC FIELDS
: MAGNETIC RESONANCE
553
A
EXACT SOLUTION OF THE MAGNETIC RESONANCE PROBLEM
55
4
B
DENSITY MATRICES AND THE MAGNETIZATION VECTOR
55
8
C
GENERAL CASE WITH J
56
0
59 SUDDEN AND ADIABATIC APPROXIMATIONS
561
A
SUDDEN APPROXIMATION
56
1
B
ADIABATIC APPROXIMATION
: AN EXAMPLE
: THE REVERSAL OF THE
MAGNETIC FIELD IN A ONE-ELECTRON ATOM
56
2
PROBLEMS
57
0
VII ATOM-PHOTON
INTERACTIONS
573
60 INTERACTION OF ELECTROMAGNETIC RADIATION WITH ATOMIC SYSTEMS
575
A
THE ELECTROMAGNETIC RADIATION FIELD
57
6
B
THE QUANTIZED RADIATION FIELD
57
9
61 PHOTONS
: THE QUANTIZED RADIATION FIELD
58
2
A
PHOTON
ENERGY
58
2
B
PHOTON LINEAR MOMENTUM
58
3
C
PHOTON REST MASS
58
4
D
ANGULAR MOMENTUM
: PHOTON SPIN
58
4
62 VECTOR SPHERICAL HARMONICS
58
7
A
PROPERTIES OF VECTOR SPHERICAL HARMONICS
58
8
B
THE VECTOR SPHERICAL HARMONICS OF THE RADIATION FIELD
59
0
C
MATHEMATICAL APPENDIX
59
3
63 THE EMISSION OF PHOTONS BY ATOMS
: ELECTRIC DIPOLE APPROXIMATION 59
8
64 THE PHOTOELECTRIC EFFECT
: HYDROGEN ATOM
60
6
PROBLEMS
61
2
65 SPONTANEOUS PHOTON EMISSION
: GENERAL CASE
: ELECTRIC AND
MAGNETIC
MULTIPOLE
RADIATION
61
5
A
ELECTRIC
MULTIPOLE
RADIATION
61
7
B
MAGNETIC
MULTIPOLE
RADIATION
62
2
PROBLEMS
62
6
66 SCATTERING OF PHOTONS BY ATOMIC SYSTEMS
63
1
A
THOMSON
SCATTERING
63
4
B
RAYLEIGH AND RAMAN SCATTERING
636
67 RESONANCE FLUORESCENCE CROSS SECTION
64
0
A
THE PHOTON SCATTERING CROSS SECTION AND THE POLARIZABILIT
Y
TENSOR
64
2
68 NATURAL LINE WIDTH
: WIGNER-WEISSKOPF TREATMENT
645
PROBLEMS
65
1
VIII INTRODUCTION TO RELATIVISTIC QUANTUM MECHANICS
655
69 DIRAC THEORY
: RELATIVISTIC QUANTUM THEORY OF SPIN-Z PARTICLES
657
A
FOUR-VECTOR CONVENTIONS
65
7
B
THE KLEIN-GORDON EQUATION
65
8
C
DIRAC'S REASONING
: HISTORICAL APPROACH
65
8
D
THE DIRAC EQUATION IN FOUR-DIMENSIONAL NOTATION
66
1
E
HERMITIAN CONJUGATE EQUATION
66
3
70 LORENTZ COVARIANCE OF THE DIRAC EQUATION
66
4
A
CONSTRUCTION OF THE LORENTZ MATRIX, S
66
6
B
SPACE INVERSIONS
67
0
71 BILINEAR COVARIANTS
67
1
A
TRANSFORMATION PROPERTIES OF THE
*F
A
*
67
2
B
LOWER INDEX Y MATRICES
67
3
72 SIMPLE SOLUTIONS
: FREE PARTICLE MOTION: PLANE WAVE SOLUTIONS
67
4
A
AN APPLICATION
: COULOMB SCATTERING OF RELATIVISTIC ELECTRONS
IN BORN APPROXIMATION: THE MOTT FORMULA
67
8
73 DIRAC EQUATION FOR A PARTICLE IN AN ELECTROMAGNETIC FIELD
68
1
A
NONRELATIVISTIC LIMIT OF THE DIRAC EQUATION
68
2
B
ANGULAR MOMENTUM
68
3
74 PAULI APPROXIMATION TO THE DIRAC EQUATION
68
6
A
THE FOLDY-WOUTHUYSEN TRANSFORMATION
69
0
75 THE KLEIN PARADOX
: AN EXAMPLE FROM THE HISTORY OF NEGATIV
E
ENERGY STATE DIFFICULTIES: THE POSITRON INTERPRETATION
69
2
A
MODERN HOLE ANALYSIS OF THE KLEIN BARRIER REFLECTION
69
5
PROBLEMS
69
8
76 EXACT SOLUTIONS FOR THE DIRAC EQUATION FOR SPHERICALLY SYMMETRI
C
POTENTIALS
70
3
A
THE RELATIVISTIC HYDROGEN ATOM
708
77 THE MIT BAG MODEL
: THE DIRAC EQUATION FOR A QUARK CONFINED T
O
A SPHERICAL REGION
713
IX INTRODUCTION TO MANY-BODY THEORY
71
9
78 MANY-BODY FORMALISM
72
1
A
OCCUPATION NUMBER REPRESENTATION
72
1
B
STATE VECTORS
72
8
C
ONE-BODY OPERATORS
72
9
D
EXAMPLES OF ONE-BODY OPERATORS
73
2
E
TWO-BODY OPERATORS
73
5
F
EXAMPLES OF TWO-BODY OPERATORS
73
8
79 MANY-BODY TECHNIQUES
: SOME SIMPLE APPLICATIONS
739
A
CONSTRUCTION OF ALL PAULI-ALLOWED STATES OF A
(D5/2)
N
3
FERMION CONFIGURATION
73
9
B
CALCULATION OF AN ELECTRIC DIPOLE TRANSITION PROBABILITY
.
. 74
3
C
PAIRING FORCES IN NUCLEI
74
5
D
THE COULOMB REPULSION TERM IN THE Z-ELECTRON ATOM
74
9
E
HARTREE-FOCK THEORY FOR ATOMS
: A BRIEF INTRODUCTION
75
1
INDEX
753 |
any_adam_object | 1 |
author | Hecht, Karl Theodor |
author_facet | Hecht, Karl Theodor |
author_role | aut |
author_sort | Hecht, Karl Theodor |
author_variant | k t h kt kth |
building | Verbundindex |
bvnumber | BV013290845 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.12 |
callnumber-search | QC174.12 |
callnumber-sort | QC 3174.12 |
callnumber-subject | QC - Physics |
classification_rvk | UK 1000 |
classification_tum | PHY 020f |
ctrlnum | (OCoLC)42072213 (DE-599)BVBBV013290845 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV013290845</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150626</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000801s2000 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959412794</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387989196</subfield><subfield code="c">Pp. : DM 169.00</subfield><subfield code="9">0-387-98919-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)42072213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013290845</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hecht, Karl Theodor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum mechanics</subfield><subfield code="c">K. T. Hecht</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 760 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate texts in contemporary physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie quantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009061710&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009061710</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV013290845 |
illustrated | Illustrated |
indexdate | 2025-04-08T14:03:58Z |
institution | BVB |
isbn | 0387989196 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009061710 |
oclc_num | 42072213 |
open_access_boolean | |
owner | DE-703 DE-824 DE-20 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-634 DE-11 |
owner_facet | DE-703 DE-824 DE-20 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-634 DE-11 |
physical | XIX, 760 S. Ill., graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series2 | Graduate texts in contemporary physics |
spelling | Hecht, Karl Theodor Verfasser aut Quantum mechanics K. T. Hecht New York [u.a.] Springer 2000 XIX, 760 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in contemporary physics Théorie quantique Quantentheorie Quantum theory Quantenmechanik (DE-588)4047989-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantenmechanik (DE-588)4047989-4 s DE-604 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009061710&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hecht, Karl Theodor Quantum mechanics Théorie quantique Quantentheorie Quantum theory Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4123623-3 |
title | Quantum mechanics |
title_auth | Quantum mechanics |
title_exact_search | Quantum mechanics |
title_full | Quantum mechanics K. T. Hecht |
title_fullStr | Quantum mechanics K. T. Hecht |
title_full_unstemmed | Quantum mechanics K. T. Hecht |
title_short | Quantum mechanics |
title_sort | quantum mechanics |
topic | Théorie quantique Quantentheorie Quantum theory Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Théorie quantique Quantentheorie Quantum theory Quantenmechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009061710&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hechtkarltheodor quantummechanics |