Mathematical methods of quantum optics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Springer series in optical sciences
79 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 285 S. |
ISBN: | 3540678026 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV013289259 | ||
003 | DE-604 | ||
005 | 20131106 | ||
007 | t | ||
008 | 000801s2001 gw |||| 00||| eng d | ||
016 | 7 | |a 959264124 |2 DE-101 | |
020 | |a 3540678026 |9 3-540-67802-6 | ||
035 | |a (OCoLC)247307478 | ||
035 | |a (DE-599)BVBBV013289259 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-703 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QC446.2 | |
082 | 0 | |a 535.20151 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UH 5090 |0 (DE-625)145653: |2 rvk | ||
084 | |a UH 5100 |0 (DE-625)145654: |2 rvk | ||
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a PHY 370f |2 stub | ||
084 | |a PHY 011f |2 stub | ||
100 | 1 | |a Puri, Ravinder Rupchand |d 1950- |e Verfasser |0 (DE-588)122132084 |4 aut | |
245 | 1 | 0 | |a Mathematical methods of quantum optics |c Ravinder R. Puri |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XIII, 285 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in optical sciences |v 79 | |
490 | 0 | |a Physics and astronomy online library | |
650 | 4 | |a Quantenoptik - Mathematische Methode | |
650 | 4 | |a Quantenoptik - Mathematische Physik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum optics |x Mathematics | |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Springer series in optical sciences |v 79 |w (DE-604)BV000000237 |9 79 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009060886&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009060886 |
Datensatz im Suchindex
_version_ | 1804128058716717056 |
---|---|
adam_text | CONTENTS 1. BASIC QUANTUM MECHANICS ................................ 1
1.1 POSTULATES OF QUANTUM MECHANICS . . . . . . . . . . . . . . . . . .
. . . . . . 1 1.1.1 POSTULATE 1 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1 1.1.2 POSTULATE 2 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.3
POSTULATE 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 11 1.1.4 POSTULATE 4 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 11 1.1.5 POSTULATE 5 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2
GEOMETRIC PHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 16 1.2.1 GEOMETRIC PHASE OF A HARMONIC OSCILLATOR
. . . . . . . . . . . 18 1.2.2 GEOMETRIC PHASE OF A TWO-L EVEL SYSTEM .
. . . . . . . . . . . 18 1.2.3 GEOMETRIC PHASE IN ADIABATIC EVOLUTION .
. . . . . . . . . . . 18 1.3 TIME-DEPENDENT APPROXIMATION METHOD . . . .
. . . . . . . . . . . . . . 19 1.4 QUANTUM MECHANICS OF A COMPOSITE
SYSTEM . . . . . . . . . . . . . . . 20 1.5 QUANTUM MECHANICS OF A
SUBSYSTEM AND DENSITY OPERATOR . . 21 1.6 SYSTEMS OF ONE AND TWO
SPIN-1/2S . . . . . . . . . . . . . . . . . . . . . . . 23 1.7
WAVE*PARTICLE DUALITY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 26 1.8 MEASUREMENT POSTULATE AND PARADOXES OF QUANTUM
THEORY . . 29 1.8.1 THE MEASUREMENT PROBLEM . . . . . . . . . . . . . .
. . . . . . . . . . 30 1.8.2 SCHR¨ ODINGER*S CAT PARADOX. . . . . . . .
. . . . . . . . . . . . . . . . . 31 1.8.3 EPR PARADOX . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.9 L OCAL
HIDDEN VARIABLES THEORY . . . . . . . . . . . . . . . . . . . . . . . .
. . . 34 2. ALGEBRA OF THE EXPONENTIAL OPERATOR ..................... 37
2.1 PARAMETRIC DIFFERENTIATION OF THE EXPONENTIAL . . . . . . . . . . .
. . . 37 2.2 EXPONENTIAL OF A FINITE-DIMENSIONAL OPERATOR . . . . . . .
. . . . . . . 38 2.3 L IE ALGEBRAIC SIMILARITY TRANSFORMATIONS . . . . .
. . . . . . . . . . . . . 39 2.3.1 HARMONIC OSCILLATOR ALGEBRA . . . . .
. . . . . . . . . . . . . . . . . . 41 2.3.2 THE SU (2) ALGEBRA . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.3 THE SU
(1,1) ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 2.3.4 THE SU ( M ) ALGEBRA . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 45 2.3.5 THE SU ( M, N ) ALGEBRA . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 45 2.4 DISENTANGLING AN EXPONENTIAL .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.1 THE
HARMONIC OSCILLATOR ALGEBRA . . . . . . . . . . . . . . . . . . . 49
2.4.2 THE SU (2) ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 50 X CONTENTS 2.4.3 SU (1,1) ALGEBRA . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 51 2.5 TIME-ORDERED
EXPONENTIAL INTEGRAL . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 HARMONIC OSCILLATOR ALGEBRA . . . . . . . . . . . . . . . . . . .
. . . . 52 2.5.2 SU (2) ALGEBRA . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 53 2.5.3 THE SU (1,1) ALGEBRA . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 53 3. REPRESENTATIONS OF
SOME LIE ALGEBRAS .................... 55 3.1 REPRESENTATION BY
EIGENVECTORS AND GROUP PARAMETERS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 55 3.1.1 BASES CONSTITUTED BY EIGENVECTORS
. . . . . . . . . . . . . . . . . . 55 3.1.2 BASES L ABELED BY GROUP
PARAMETERS . . . . . . . . . . . . . . . . 56 3.2 REPRESENTATIONS OF
HARMONIC OSCILLATOR ALGEBRA . . . . . . . . . . . . 60 3.2.1 ORTHONORMAL
BASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 MINIMUM UNCERTAINTY COHERENT STATES . . . . . . . . . . . . . . 61
3.3 REPRESENTATIONS OF SU (2) . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 68 3.3.1 ORTHONORMAL REPRESENTATION . . . . . . .
. . . . . . . . . . . . . . . . 68 3.3.2 MINIMUM UNCERTAINTY COHERENT
STATES . . . . . . . . . . . . . . 70 3.4 REPRESENTATIONS OF SU (1 , 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.1
ORTHONORMAL BASES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 76 3.4.2 MINIMUM UNCERTAINTY COHERENT STATES . . . . . . . . . .
. . . . 77 4. QUASIPROBABILITIES AND NON-CLASSICAL STATES
............... 81 4.1 PHASE SPACE DISTRIBUTION FUNCTIONS . . . . . . .
. . . . . . . . . . . . . . . . 81 4.2 PHASE SPACE REPRESENTATION OF
SPINS . . . . . . . . . . . . . . . . . . . . . . 88 4.3
QUASIPROBABILITIY DISTRIBUTIONS FOR EIGENVALUES OF SPIN COMPONENTS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4
CLASSICAL AND NON-CLASSICAL STATES . . . . . . . . . . . . . . . . . . .
. . . . . . 95 4.4.1 NON-CLASSICAL STATES OF ELECTROMAGNETIC FIELD . . .
. . . . . 95 4.4.2 NON-CLASSICAL STATES OF SPIN-1/2S . . . . . . . . . .
. . . . . . . . . 97 5. THEORY OF STOCHASTIC PROCESSES
........................... 99 5.1 PROBABILITY DISTRIBUTIONS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 MARKOV
PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 102 5.3 DETAILED BALANCE . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 105 5.4 LIOUVILLE AND
FOKKER*PLANCK EQUATIONS . . . . . . . . . . . . . . . . . . . . 106
5.4.1 LIOUVILLE EQUATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 107 5.4.2 THE FOKKER*PLANCK EQUATION . . . . . . . . . .
. . . . . . . . . . . . 107 5.5 STOCHASTIC DIFFERENTIAL EQUATIONS . . .
. . . . . . . . . . . . . . . . . . . . . . 109 5.6 L INEAR EQUATIONS
WITH ADDITIVE NOISE . . . . . . . . . . . . . . . . . . . . . 110 5.7 L
INEAR EQUATIONS WITH MULTIPLICATIVE NOISE . . . . . . . . . . . . . . .
. 112 5.7.1 UNIVARIATE LINEAR MULTIPLICATIVE STOCHASTIC DIFFEREN- TIAL
EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 113 5.7.2 MULTIVARIATE LINEAR MULTIPLICATIVE STOCHASTIC
DIFFER- ENTIAL EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 114 5.8 THE POISSON PROCESS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 115 CONTENTS XI 5.9
STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY RANDOM TELEGRAPH NOISE . . .
. . . . . . . . . . . . . . . . . . . . 116 6. THE ELECTROMAGNETIC FIELD
................................ 119 6.1 FREE CLASSICAL FIELD . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2
FIELD QUANTIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 121 6.3 STATISTICAL PROPERTIES OF CLASSICAL FIELD
. . . . . . . . . . . . . . . . . . . . 123 6.3.1 FIRST-ORDER
CORRELATION FUNCTION . . . . . . . . . . . . . . . . . . . 125 6.3.2
SECOND-ORDER CORRELATION FUNCTION . . . . . . . . . . . . . . . . . 126
6.3.3 HIGHER-ORDER CORRELATIONS . . . . . . . . . . . . . . . . . . . .
. . . . . 126 6.3.4 STABLE AND CHAOTIC FIELDS . . . . . . . . . . . . .
. . . . . . . . . . . . 127 6.4 STATISTICAL PROPERTIES OF QUANTIZED
FIELD . . . . . . . . . . . . . . . . . . . 130 6.4.1 FIRST-ORDER
CORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 SECOND-ORDER CORRELATION . . . . . . . . . . . . . . . . . . . . .
. . . . 132 6.4.3 QUANTIZED COHERENT AND THERMAL FIELDS . . . . . . . .
. . . . 132 6.5 HOMODYNED DETECTION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 134 6.6 SPECTRUM . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7. ATOM*FIELD INTERACTION HAMILTONIANS ..................... 137 7.1
DIPOLE INTERACTION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 137 7.2 ROTATING WAVE AND RESONANCE APPROXIMATIONS
. . . . . . . . . . . . . 140 7.3 TWO-L EVEL ATOM . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7.4 THREE-L
EVEL ATOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 145 7.5 EFFECTIVE TWO-L EVEL ATOM . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 146 7.6 MULTI-CHANNEL MODELS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.7
PARAMETRIC PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 150 7.8 CAVITY QED . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 151 7.9 MOVING ATOM .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 153 8. QUANTUM THEORY OF DAMPING .............................
155 8.1 THE MASTER EQUATION . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 155 8.2 SOLVING A MASTER EQUATION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 160 8.3 MULTI-TIME
AVERAGE OF SYSTEM OPERATORS . . . . . . . . . . . . . . . . . . 162 8.4
BATH OF HARMONIC OSCILLATORS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 163 8.4.1 THERMAL RESERVOIR . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 164 8.4.2 SQUEEZED RESERVOIR . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 166 8.4.3 RESERVOIR OF
THE ELECTROMAGNETIC FIELD . . . . . . . . . . . . . . 167 8.5 MASTER
EQUATION FOR A HARMONIC OSCILLATOR . . . . . . . . . . . . . . . . 168
8.6 MASTER EQUATION FOR TWO-L EVEL ATOMS . . . . . . . . . . . . . . . .
. . . . 170 8.6.1 TWO-L EVEL ATOM IN A MONOCHROMATIC FIELD . . . . . . .
. . . 171 8.6.2 COLLISIONAL DAMPING . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 172 8.7 MASTER EQUATION FOR A THREE-L EVEL ATOM
. . . . . . . . . . . . . . . . . . 173 8.8 MASTER EQUATION FOR FIELD
INTERACTING WITH A RESERVOIR OF ATOMS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 174 XII CONTENTS 9. LINEAR AND NONLINEAR
RESPONSE OF A SYSTEM IN AN EXTERNAL FIELD
...................................... 177 9.1 STEADY STATE OF A SYSTEM
IN AN EXTERNAL FIELD. . . . . . . . . . . . . . 177 9.2 OPTICAL
SUSCEPTIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 179 9.3 RATE OF ABSORPTION OF ENERGY . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 181 9.4 RESPONSE IN A FLUCTUATING FIELD
. . . . . . . . . . . . . . . . . . . . . . . . . . 183 10. SOLUTION OF
LINEAR EQUATIONS: METHOD OF EIGENVECTOR EXPANSION
........................ 185 10.1 EIGENVALUES AND EIGENVECTORS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 186 10.2 GENERALIZED
EIGENVALUES AND EIGENVECTORS . . . . . . . . . . . . . . . . . 189 10.3
SOLUTION OF TWO-TERM DIFFERENCE-DIFFERENTIAL EQUATION . . . . . . 191
10.4 EXACTLY SOLVABLE TWO- AND THREE-TERM RECURSION RELATIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.4.1 TWO-TERM RECURSION RELATIONS . . . . . . . . . . . . . . . . . .
. . . 192 10.4.2 THREE-TERM RECURSION RELATIONS . . . . . . . . . . . .
. . . . . . . 193 11. TWO-LEVEL AND THREE-LEVEL HAMILTONIAN SYSTEMS
.................... 199 11.1 EXACTLY SOLVABLE TWO-L EVEL SYSTEMS . . .
. . . . . . . . . . . . . . . . . . . 199 11.1.1 TIME-INDEPENDENT
DETUNING AND COUPLING . . . . . . . . . . . 202 11.1.2 ON-RESONANT REAL
TIME-DEPENDENT COUPLING . . . . . . . . 208 11.1.3 FLUCTUATING COUPLING
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.2 N
TWO-L EVEL ATOMS IN A QUANTIZED FIELD . . . . . . . . . . . . . . . . .
210 11.3 EXACTLY SOLVABLE THREE-L EVEL SYSTEMS . . . . . . . . . . . . .
. . . . . . . . 210 11.4 EFFECTIVE TWO-L EVEL APPROXIMATION . . . . . .
. . . . . . . . . . . . . . . . . 212 12. DISSIPATIVE ATOMIC SYSTEMS
............................... 215 12.1 TWO-L EVEL ATOM IN A
QUASIMONOCHROMATIC FIELD . . . . . . . . . . . 215 12.1.1 TIME-DEPENDENT
EVOLUTION OPERATOR REDUCIBLE TO SU (2) . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 217 12.1.2 TIME-INDEPENDENT EVOLUTION
OPERATOR . . . . . . . . . . . . . . 219 12.1.3 NONLINEAR RESPONSE IN A
BICHROMATIC FIELD . . . . . . . . . . 223 12.2 N TWO-L EVEL ATOMS IN A
MONOCHROMATIC FIELD . . . . . . . . . . . . . 224 12.3 TWO-L EVEL ATOMS
IN A FLUCTUATING FIELD . . . . . . . . . . . . . . . . . . . 236 12.4
DRIVEN THREE-L EVEL ATOM. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 237 13. DISSIPATIVE FIELD DYNAMICS
............................... 239 13.1 DOWN-CONVERSION IN A DAMPED
CAVITY . . . . . . . . . . . . . . . . . . . . 239 13.1.1 AVERAGES AND
VARIANCES OF THE CAVITY FIELD OPERATORS 240 13.1.2 DENSITY MATRIX . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.2
FIELD INTERACTING WITH A TWO-PHOTON RESERVOIR . . . . . . . . . . . . .
245 13.2.1 TWO-PHOTON ABSORPTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . 245 13.2.2 TWO-PHOTON GENERATION AND ABSORPTION . . . . .
. . . . . . . 247 13.3 RESERVOIR IN THE L AMBDA CONFIGURATION . . . . .
. . . . . . . . . . . . . . . 248 CONTENTS XIII 14. DISSIPATIVE CAVITY
QED .................................. 251 14.1 TWO-L EVEL ATOMS IN A
SINGLE-MODE CAVITY . . . . . . . . . . . . . . . . . 251 14.2 STRONG
ATOM*FIELD COUPLING . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 252 14.2.1 SINGLE TWO-L EVEL ATOM . . . . . . . . . . . . . . . .
. . . . . . . . . . . 252 14.3 RESPONSE TO AN EXTERNAL FIELD . . . . . .
. . . . . . . . . . . . . . . . . . . . . 255 14.3.1 L INEAR RESPONSE TO
A MONOCHROMATIC FIELD . . . . . . . . . . 256 14.3.2 NONLINEAR RESPONSE
TO A BICHROMATIC FIELD . . . . . . . . . . 257 14.4 THE MICROMASER . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 259 14.4.1 DENSITY OPERATOR OF THE FIELD . . . . . . . . . . . . . . .
. . . . . . . 259 14.4.2 TWO-L EVEL ATOMIC MICROMASER . . . . . . . . .
. . . . . . . . . . . . 263 14.4.3 ATOMIC STATISTICS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 266 APPENDICES
................................................... 267 A. SOME
MATHEMATICAL FORMULAE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 267 B. HYPERGEOMETRIC EQUATION. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 270 C. SOLUTION OF TWO- AND
THREE-DIMENSIONAL L INEAR EQUATIONS . . . . . . . . . . . . . . . . . .
272 D. ROOTS OF A POLYNOMIAL . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 273 REFERENCES
.................................................... 277 INDEX
......................................................... 283
|
any_adam_object | 1 |
author | Puri, Ravinder Rupchand 1950- |
author_GND | (DE-588)122132084 |
author_facet | Puri, Ravinder Rupchand 1950- |
author_role | aut |
author_sort | Puri, Ravinder Rupchand 1950- |
author_variant | r r p rr rrp |
building | Verbundindex |
bvnumber | BV013289259 |
callnumber-first | Q - Science |
callnumber-label | QC446 |
callnumber-raw | QC446.2 |
callnumber-search | QC446.2 |
callnumber-sort | QC 3446.2 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 UH 5090 UH 5100 UH 5600 |
classification_tum | PHY 370f PHY 011f |
ctrlnum | (OCoLC)247307478 (DE-599)BVBBV013289259 |
dewey-full | 535.20151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535.20151 |
dewey-search | 535.20151 |
dewey-sort | 3535.20151 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02280nam a22006018cb4500</leader><controlfield tag="001">BV013289259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131106 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000801s2001 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959264124</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540678026</subfield><subfield code="9">3-540-67802-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247307478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013289259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC446.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535.20151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5090</subfield><subfield code="0">(DE-625)145653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5100</subfield><subfield code="0">(DE-625)145654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 370f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Puri, Ravinder Rupchand</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122132084</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods of quantum optics</subfield><subfield code="c">Ravinder R. Puri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 285 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">79</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantenoptik - Mathematische Methode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantenoptik - Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum optics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">79</subfield><subfield code="w">(DE-604)BV000000237</subfield><subfield code="9">79</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009060886&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009060886</subfield></datafield></record></collection> |
id | DE-604.BV013289259 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:43:12Z |
institution | BVB |
isbn | 3540678026 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009060886 |
oclc_num | 247307478 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-634 DE-83 DE-11 DE-188 |
physical | XIII, 285 S. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Springer series in optical sciences |
series2 | Springer series in optical sciences Physics and astronomy online library |
spelling | Puri, Ravinder Rupchand 1950- Verfasser (DE-588)122132084 aut Mathematical methods of quantum optics Ravinder R. Puri Berlin [u.a.] Springer 2001 XIII, 285 S. txt rdacontent n rdamedia nc rdacarrier Springer series in optical sciences 79 Physics and astronomy online library Quantenoptik - Mathematische Methode Quantenoptik - Mathematische Physik Mathematik Mathematische Physik Mathematical physics Quantum optics Mathematics Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Quantenoptik (DE-588)4047990-0 gnd rswk-swf Quantenoptik (DE-588)4047990-0 s Mathematische Methode (DE-588)4155620-3 s DE-604 Mathematische Physik (DE-588)4037952-8 s Springer series in optical sciences 79 (DE-604)BV000000237 79 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009060886&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Puri, Ravinder Rupchand 1950- Mathematical methods of quantum optics Springer series in optical sciences Quantenoptik - Mathematische Methode Quantenoptik - Mathematische Physik Mathematik Mathematische Physik Mathematical physics Quantum optics Mathematics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenoptik (DE-588)4047990-0 gnd |
subject_GND | (DE-588)4155620-3 (DE-588)4037952-8 (DE-588)4047990-0 |
title | Mathematical methods of quantum optics |
title_auth | Mathematical methods of quantum optics |
title_exact_search | Mathematical methods of quantum optics |
title_full | Mathematical methods of quantum optics Ravinder R. Puri |
title_fullStr | Mathematical methods of quantum optics Ravinder R. Puri |
title_full_unstemmed | Mathematical methods of quantum optics Ravinder R. Puri |
title_short | Mathematical methods of quantum optics |
title_sort | mathematical methods of quantum optics |
topic | Quantenoptik - Mathematische Methode Quantenoptik - Mathematische Physik Mathematik Mathematische Physik Mathematical physics Quantum optics Mathematics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Quantenoptik (DE-588)4047990-0 gnd |
topic_facet | Quantenoptik - Mathematische Methode Quantenoptik - Mathematische Physik Mathematik Mathematische Physik Mathematical physics Quantum optics Mathematics Mathematische Methode Quantenoptik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009060886&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000237 |
work_keys_str_mv | AT puriravinderrupchand mathematicalmethodsofquantumoptics |