Applications of fractional calculus in physics:
Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigr...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2000
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology. |
Beschreibung: | VII, 463 S. graph. Darst. |
ISBN: | 9810234570 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV013225042 | ||
003 | DE-604 | ||
005 | 20100920 | ||
007 | t | ||
008 | 000629s2000 d||| |||| 00||| eng d | ||
020 | |a 9810234570 |9 981-02-3457-0 | ||
035 | |a (OCoLC)42980268 | ||
035 | |a (DE-599)BVBBV013225042 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-19 |a DE-384 |a DE-355 |a DE-573 |a DE-83 |a DE-11 |a DE-91G |a DE-188 | ||
050 | 0 | |a QC20.7.F75 | |
082 | 0 | |a 530.15/583 |2 21 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a MAT 260f |2 stub | ||
084 | |a PHY 013f |2 stub | ||
245 | 1 | 0 | |a Applications of fractional calculus in physics |c ed. R. Hilfer |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2000 | |
300 | |a VII, 463 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology. | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Fractional calculus | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Integral gebrochener Ordnung |0 (DE-588)4365957-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Integral gebrochener Ordnung |0 (DE-588)4365957-3 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hilfer, Rudolf |e Sonstige |4 oth | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009012370&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009012370 |
Datensatz im Suchindex
_version_ | 1804127983963734016 |
---|---|
adam_text | APPLICATIONS OF FRACTIONAL CALCULUS IN PHYSICS EDITOR R. HILFER
UNIVERSITAET MAINZ AND UNIVERSITAET STUTTGART GERMANY VFE WORLD SCIENTIFIC
SINGAPORE * NEW JERSEY * LONDON * SINGAPORE * NEW JERSEY * LONDON * HONG
KONG CONTENTS PREFACE V CHAPTER I AN INTRODUCTION TO FRACTIONAL CALCULUS
1 P. L. PUTZER AND U. WESTPHAL CHAPTER II FRACTIONAL TIME EVOLUTION 87
R. HILFER CHAPTER III FRACTIONAL POWERS OF INFINITESIMAL GENERATORS OF
SEMIGROUPS 131 U. WESTPHAL CHAPTER IV FRACTIONAL DIFFERENCES,
DERIVATIVES AND FRACTAL TIME SERIES 171 B. J. WEST AND P. GRIGOLINI
CHAPTER V FRACTIONAL KINETICS OF HAMILTONIAN CHAOTIC SYSTEMS 203 G. M.
ZASLAVSKY CHAPTER VI POLYMER SCIENCE APPLICATIONS OF PATH-INTEGRATION,
INTEGRAL EQUATIONS, AND FRACTIONAL CALCULUS 241 J. F. DOUGLAS CHAPTER
VII APPLICATIONS TO PROBLEMS IN POLYMER PHYSICS AND RHEOLOGY 331 H.
SCHIESSEL, CHR. FRIEDRICH AND A. BLUMEN CHAPTER VIII APPLICATIONS OF
FRACTIONAL CALCULUS TECHNIQUES TO PROBLEMS IN BIOPHYSICS 377 T. F.
NONNENMACHER AND R. METZLER CHAPTER IX FRACTIONAL CALCULUS AND REGULAER
VARIATION IN THERMODYNAMICS 429 R. HILFER VII
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV013225042 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.F75 |
callnumber-search | QC20.7.F75 |
callnumber-sort | QC 220.7 F75 |
callnumber-subject | QC - Physics |
classification_rvk | SK 620 SK 950 |
classification_tum | MAT 260f PHY 013f |
ctrlnum | (OCoLC)42980268 (DE-599)BVBBV013225042 |
dewey-full | 530.15/583 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/583 |
dewey-search | 530.15/583 |
dewey-sort | 3530.15 3583 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02672nam a2200505 c 4500</leader><controlfield tag="001">BV013225042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100920 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000629s2000 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810234570</subfield><subfield code="9">981-02-3457-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)42980268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013225042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.F75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/583</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 260f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of fractional calculus in physics</subfield><subfield code="c">ed. R. Hilfer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 463 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integral gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365957-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integral gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365957-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hilfer, Rudolf</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009012370&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009012370</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV013225042 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:42:01Z |
institution | BVB |
isbn | 9810234570 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009012370 |
oclc_num | 42980268 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-384 DE-355 DE-BY-UBR DE-573 DE-83 DE-11 DE-91G DE-BY-TUM DE-188 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-384 DE-355 DE-BY-UBR DE-573 DE-83 DE-11 DE-91G DE-BY-TUM DE-188 |
physical | VII, 463 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific |
record_format | marc |
spelling | Applications of fractional calculus in physics ed. R. Hilfer Singapore [u.a.] World Scientific 2000 VII, 463 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology. Mathematische Physik Fractional calculus Mathematical physics Integral gebrochener Ordnung (DE-588)4365957-3 gnd rswk-swf Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Ableitung gebrochener Ordnung (DE-588)4365956-1 s Mathematische Physik (DE-588)4037952-8 s DE-604 Integral gebrochener Ordnung (DE-588)4365957-3 s Hilfer, Rudolf Sonstige oth GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009012370&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Applications of fractional calculus in physics Mathematische Physik Fractional calculus Mathematical physics Integral gebrochener Ordnung (DE-588)4365957-3 gnd Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4365957-3 (DE-588)4365956-1 (DE-588)4037952-8 (DE-588)4143413-4 |
title | Applications of fractional calculus in physics |
title_auth | Applications of fractional calculus in physics |
title_exact_search | Applications of fractional calculus in physics |
title_full | Applications of fractional calculus in physics ed. R. Hilfer |
title_fullStr | Applications of fractional calculus in physics ed. R. Hilfer |
title_full_unstemmed | Applications of fractional calculus in physics ed. R. Hilfer |
title_short | Applications of fractional calculus in physics |
title_sort | applications of fractional calculus in physics |
topic | Mathematische Physik Fractional calculus Mathematical physics Integral gebrochener Ordnung (DE-588)4365957-3 gnd Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Mathematische Physik Fractional calculus Mathematical physics Integral gebrochener Ordnung Ableitung gebrochener Ordnung Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009012370&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hilferrudolf applicationsoffractionalcalculusinphysics |