Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Bielefeld
Sonderforschungsbereich 343
1999
|
Schriftenreihe: | Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint
1999,118 |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV013084561 | ||
003 | DE-604 | ||
005 | 20010717 | ||
007 | t | ||
008 | 000321s1999 gw |||| 00||| eng d | ||
016 | 7 | |a 958567263 |2 DE-101 | |
035 | |a (OCoLC)76083841 | ||
035 | |a (DE-599)BVBBV013084561 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-824 |a DE-473 | ||
084 | |a SI 990 |0 (DE-625)143213: |2 rvk | ||
100 | 1 | |a Ahlswede, Rudolf |d 1938-2010 |e Verfasser |0 (DE-588)121242293 |4 aut | |
245 | 1 | 0 | |a Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace |c by R. Ahlswede, H. Aydinian and L. Khachatrian |
264 | 1 | |a Bielefeld |b Sonderforschungsbereich 343 |c 1999 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint |v 1999,118 | |
700 | 1 | |a Aydinian, H. K. |e Verfasser |4 aut | |
700 | 1 | |a Chačatrjan, Levon H. |e Verfasser |4 aut | |
830 | 0 | |a Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint |v 1999,118 |w (DE-604)BV008195962 |9 1999,118 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008913246 |
Datensatz im Suchindex
_version_ | 1811034370297823232 |
---|---|
adam_text | |
any_adam_object | |
author | Ahlswede, Rudolf 1938-2010 Aydinian, H. K. Chačatrjan, Levon H. |
author_GND | (DE-588)121242293 |
author_facet | Ahlswede, Rudolf 1938-2010 Aydinian, H. K. Chačatrjan, Levon H. |
author_role | aut aut aut |
author_sort | Ahlswede, Rudolf 1938-2010 |
author_variant | r a ra h k a hk hka l h c lh lhc |
building | Verbundindex |
bvnumber | BV013084561 |
classification_rvk | SI 990 |
ctrlnum | (OCoLC)76083841 (DE-599)BVBBV013084561 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV013084561</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010717</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">000321s1999 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958567263</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76083841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013084561</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 990</subfield><subfield code="0">(DE-625)143213:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahlswede, Rudolf</subfield><subfield code="d">1938-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121242293</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace</subfield><subfield code="c">by R. Ahlswede, H. Aydinian and L. Khachatrian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bielefeld</subfield><subfield code="b">Sonderforschungsbereich 343</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint</subfield><subfield code="v">1999,118</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aydinian, H. K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chačatrjan, Levon H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint</subfield><subfield code="v">1999,118</subfield><subfield code="w">(DE-604)BV008195962</subfield><subfield code="9">1999,118</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008913246</subfield></datafield></record></collection> |
id | DE-604.BV013084561 |
illustrated | Not Illustrated |
indexdate | 2024-09-24T00:16:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008913246 |
oclc_num | 76083841 |
open_access_boolean | |
owner | DE-824 DE-473 DE-BY-UBG |
owner_facet | DE-824 DE-473 DE-BY-UBG |
physical | 18 S. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Sonderforschungsbereich 343 |
record_format | marc |
series | Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint |
series2 | Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint |
spelling | Ahlswede, Rudolf 1938-2010 Verfasser (DE-588)121242293 aut Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace by R. Ahlswede, H. Aydinian and L. Khachatrian Bielefeld Sonderforschungsbereich 343 1999 18 S. txt rdacontent n rdamedia nc rdacarrier Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint 1999,118 Aydinian, H. K. Verfasser aut Chačatrjan, Levon H. Verfasser aut Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint 1999,118 (DE-604)BV008195962 1999,118 |
spellingShingle | Ahlswede, Rudolf 1938-2010 Aydinian, H. K. Chačatrjan, Levon H. Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace Sonderforschungsbereich Diskrete Strukturen in der Mathematik <Bielefeld>: Preprint |
title | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace |
title_auth | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace |
title_exact_search | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace |
title_full | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace by R. Ahlswede, H. Aydinian and L. Khachatrian |
title_fullStr | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace by R. Ahlswede, H. Aydinian and L. Khachatrian |
title_full_unstemmed | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace by R. Ahlswede, H. Aydinian and L. Khachatrian |
title_short | Maximal number of constant weight vertices of the unit n-cube contained in a k-dimensional subspace |
title_sort | maximal number of constant weight vertices of the unit n cube contained in a k dimensional subspace |
volume_link | (DE-604)BV008195962 |
work_keys_str_mv | AT ahlswederudolf maximalnumberofconstantweightverticesoftheunitncubecontainedinakdimensionalsubspace AT aydinianhk maximalnumberofconstantweightverticesoftheunitncubecontainedinakdimensionalsubspace AT chacatrjanlevonh maximalnumberofconstantweightverticesoftheunitncubecontainedinakdimensionalsubspace |