Quasi-conservative systems: cycles, resonances and chaos
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
1998
|
Schriftenreihe: | [World scientific series on nonlinear science / A]
30 |
Schlagworte: | |
Beschreibung: | XII, 325 S. Ill., graph. Darst. |
ISBN: | 9810228104 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012676511 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 990723s1998 ad|| |||| 00||| eng d | ||
020 | |a 9810228104 |9 981-02-2810-4 | ||
035 | |a (OCoLC)632634960 | ||
035 | |a (DE-599)BVBBV012676511 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Morozov, Albert D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quasi-conservative systems |b cycles, resonances and chaos |c Albert D. Morozov |
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 1998 | |
300 | |a XII, 325 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a [World scientific series on nonlinear science / A] |v 30 | |
650 | 4 | |a ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS) | |
650 | 4 | |a ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS) | |
650 | 4 | |a ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN) | |
650 | 4 | |a DUFFING EQUATION (MATHEMATICAL ANALYSIS) | |
650 | 4 | |a DUFFING-GLEICHUNG (ANALYSIS) | |
650 | 4 | |a HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS) | |
650 | 4 | |a HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK) | |
650 | 4 | |a KAM THEORY (MECHANICS) | |
650 | 4 | |a KAM-THEORIE (MECHANIK) | |
650 | 4 | |a NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS) | |
650 | 4 | |a NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) | |
650 | 4 | |a PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE) | |
650 | 4 | |a SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) | |
650 | 4 | |a SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS) | |
650 | 4 | |a THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE) | |
650 | 4 | |a ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE) | |
650 | 4 | |a ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE) | |
650 | 4 | |a ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE) | |
810 | 2 | |a A] |t [World scientific series on nonlinear science |v 30 |w (DE-604)BV009051753 |9 30 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-008615289 |
Datensatz im Suchindex
_version_ | 1804127337460006912 |
---|---|
any_adam_object | |
author | Morozov, Albert D. |
author_facet | Morozov, Albert D. |
author_role | aut |
author_sort | Morozov, Albert D. |
author_variant | a d m ad adm |
building | Verbundindex |
bvnumber | BV012676511 |
classification_rvk | UK 1200 |
ctrlnum | (OCoLC)632634960 (DE-599)BVBBV012676511 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02276nam a2200505 cb4500</leader><controlfield tag="001">BV012676511</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990723s1998 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810228104</subfield><subfield code="9">981-02-2810-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)632634960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012676511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morozov, Albert D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-conservative systems</subfield><subfield code="b">cycles, resonances and chaos</subfield><subfield code="c">Albert D. Morozov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 325 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">[World scientific series on nonlinear science / A]</subfield><subfield code="v">30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DUFFING EQUATION (MATHEMATICAL ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DUFFING-GLEICHUNG (ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KAM THEORY (MECHANICS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KAM-THEORIE (MECHANIK)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE)</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">A]</subfield><subfield code="t">[World scientific series on nonlinear science</subfield><subfield code="v">30</subfield><subfield code="w">(DE-604)BV009051753</subfield><subfield code="9">30</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008615289</subfield></datafield></record></collection> |
id | DE-604.BV012676511 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:31:45Z |
institution | BVB |
isbn | 9810228104 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008615289 |
oclc_num | 632634960 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XII, 325 S. Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | World Scientific |
record_format | marc |
series2 | [World scientific series on nonlinear science / A] |
spelling | Morozov, Albert D. Verfasser aut Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov Singapore [u.a.] World Scientific 1998 XII, 325 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier [World scientific series on nonlinear science / A] 30 ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS) ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS) ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN) DUFFING EQUATION (MATHEMATICAL ANALYSIS) DUFFING-GLEICHUNG (ANALYSIS) HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS) HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK) KAM THEORY (MECHANICS) KAM-THEORIE (MECHANIK) NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS) NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE) SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS) THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE) ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE) ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE) ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE) A] [World scientific series on nonlinear science 30 (DE-604)BV009051753 30 |
spellingShingle | Morozov, Albert D. Quasi-conservative systems cycles, resonances and chaos ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS) ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS) ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN) DUFFING EQUATION (MATHEMATICAL ANALYSIS) DUFFING-GLEICHUNG (ANALYSIS) HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS) HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK) KAM THEORY (MECHANICS) KAM-THEORIE (MECHANIK) NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS) NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE) SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS) THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE) ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE) ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE) ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE) |
title | Quasi-conservative systems cycles, resonances and chaos |
title_auth | Quasi-conservative systems cycles, resonances and chaos |
title_exact_search | Quasi-conservative systems cycles, resonances and chaos |
title_full | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_fullStr | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_full_unstemmed | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_short | Quasi-conservative systems |
title_sort | quasi conservative systems cycles resonances and chaos |
title_sub | cycles, resonances and chaos |
topic | ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS) ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS) ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN) DUFFING EQUATION (MATHEMATICAL ANALYSIS) DUFFING-GLEICHUNG (ANALYSIS) HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS) HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK) KAM THEORY (MECHANICS) KAM-THEORIE (MECHANIK) NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS) NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE) SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS) THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE) ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE) ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE) ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE) |
topic_facet | ATTRACTEURS + ATTRACTEURS ÉTRANGES (TOPOLOGIE DES VARIÉTÉS) ATTRACTORS + STRANGE ATTRACTORS (TOPOLOGY OF MANIFOLDS) ATTRAKTOREN + FREMDATTRAKTOREN (TOPOLOGIE DER MANNIGFALTIGKEITEN) DUFFING EQUATION (MATHEMATICAL ANALYSIS) DUFFING-GLEICHUNG (ANALYSIS) HAMILTONIAN EQUATIONS, HAMILTON FORMALISM (MECHANICS) HAMILTONSCHE GLEICHUNGEN, HAMILTONSCHER FORMALISMUS (MECHANIK) KAM THEORY (MECHANICS) KAM-THEORIE (MECHANIK) NICHTLINEARE GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN (ANALYSIS) NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) PERTURBATIONS SINGULIÈRES D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (ANALYSE MATHÉMATIQUE) SINGULAR PERTURBATIONS OF ORDINARY DIFFERENTIAL EQUATIONS (MATHEMATICAL ANALYSIS) SINGULÄRE STÖRUNGEN VON GEWÖHNLICHEN DIFFERENTIALGLEICHUNGEN (ANALYSIS) THÉORIE DE KOLMOGOROV-ARNOLD-MOSER (MÉCANIQUE) ÉQUATION DE DUFFING (ANALYSE MATHÉMATIQUE) ÉQUATIONS DE HAMILTON, ÉQUATIONS CANONIQUES (MÉCANIQUE) ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES NON LINÉAIRES (ANALYSE MATHÉMATIQUE) |
volume_link | (DE-604)BV009051753 |
work_keys_str_mv | AT morozovalbertd quasiconservativesystemscyclesresonancesandchaos |