Atmospheric processes over complex terrain:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boston, Mass.
American Meteorological Society
1990
|
Schriftenreihe: | Meteorological monographs
45 = Vol.23 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 323 S. Ill., graph. Darst., Kt. |
ISBN: | 1878220012 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012668764 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 990720s1990 abd| |||| 00||| eng d | ||
020 | |a 1878220012 |9 1-878220-01-2 | ||
035 | |a (OCoLC)22173381 | ||
035 | |a (DE-599)BVBBV012668764 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-634 |a DE-188 | ||
050 | 0 | |a QC880.4.A8 | |
082 | 0 | |a 551.523 | |
245 | 1 | 0 | |a Atmospheric processes over complex terrain |c Robert M. Banta ... . William Blumen, ed. |
264 | 1 | |a Boston, Mass. |b American Meteorological Society |c 1990 | |
300 | |a XIII, 323 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Meteorological monographs |v 45 = Vol.23 | |
650 | 4 | |a Circulation atmosphérique | |
650 | 4 | |a Climat de montagne | |
650 | 4 | |a Météorologie dynamique | |
650 | 4 | |a Temps (Météorologie), Effets des montagnes sur le | |
650 | 4 | |a Mountain climate | |
650 | 4 | |a Mountain wave | |
650 | 4 | |a Weather |x Effect of mountains on | |
700 | 1 | |a Banta, Robert M. |e Sonstige |4 oth | |
700 | 1 | |a Blumen, William |e Sonstige |4 oth | |
830 | 0 | |a Meteorological monographs |v 45 = Vol.23 |w (DE-604)BV002536864 |9 45 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008609427&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008609427 |
Datensatz im Suchindex
_version_ | 1804127328681328640 |
---|---|
adam_text | Titel: Atmospheric processes over complex terrain
Autor: Banta, Robert M.
Jahr: 1990
TABLE OF CONTENTS
Preface xii
List of Contributors xiii
Chapter 1. Mountain Meteorology
—William Blumen .......................................................... 1
ABSTRACT ...................................................................... 1
1.1 Introduction .................................................................. 1
1.2 Some historical footnotes........................................................ 1
1.2.1 Surface winds ............................................................ 1
1.2.2 Observations and observers ................................................. 2
1.2.3 The discovery of atmospheric waves .......................................... 3
1.3 Current directions ............................................................. 3
Acknowledgments .................................................................. 4
Chapter 2. Observations of Thermally Developed Wind Systems in Mountainous Terrain
—C. David Whiteman ....................................................... 5
ABSTRACT ...................................................................... 5
2.1 Introduction to diurnal mountain winds............................................ 5
2.1.1 Summary of recent field experiments.......................................... 6
2.2 Along-valley wind systems ....................................................... 7
2.2.1 Climatology ............................................................. 7
2.2.2 Basic physics............................................................. 9
2.2.2.1 Topographic amplification factor ................................ 9
2.2.2.2 Equations for the valley wind system............................. 13
2.2.3 Radiation and surface energy budgets ......................................... 14
2.2.3.1 Radiation budget ................................................ 15
2.2.3.2 Surface energy budget........................................... 17
2.2.4 Atmospheric budgets of mass, heat, momentum, and moisture ..................... 21
2.2.4.1 Conservation of atmospheric mass ................................ 22
2.2.4.2 Thermal energy budget .......................................... 23
2.2.4.3 Momentum budget ............................................... 25
2.2.4.4 Humidity budget................................................. 25
2.3 Slope wind systems............................................................. 25
2.3.1 Simple slope flows ........................................................ 25
2.3.2 Slope flows on valley sidewalls............................................... 26
2.4 Morning transition ............................................................. 28
2.5 Evening transition ............................................................. 32
2.6 The diurnal cycle .............................................................. 34
2.7 Other phenomena.............................................................. 35
2.7.1 Influence of external winds.................................................. 35
2.7.2 Maloja winds ............................................................ 36
2.7.3 Jets at valley exits......................................................... 36
2.7.4 Antiwind systems ......................................................... 38
2.7.5 Tributary flows ........................................................... 38
2.8 Future research................................................................ 39
Acknowledgments .................................................................. 42
CONTENTS
Chapter 3. Thermally Forced Flows: Theory
—Joseph Egger............................................................. 43
ABSTRACT ...................................................................... 43
3.1 Introduction .................................................................. 43
3.2 The problem .................................................................. 43
3.3 Circulation in a cavity with differentially heated sidewalls.............................. 44
3.4 Sloping boundaries............................................................. 48
3.5 Circulation in valley cross-sections ................................................ 51
3.6 Toward three-dimensional modeling............................................... 53
3.7 Three-dimensional valley flow.................................................... 55
3.8 Outlook...................................................................... 57
Chapter 4. Mountain Waves and Downslope Winds
—Dale R. Durran .......................................................... 59
ABSTRACT ...................................................................... 59
4.1 Introduction .................................................................. 59
4.2 Fundamentals of internal gravity waves ............................................ 59
4.3 Application to small-amplitude mountain waves ..................................... 62
4.3.1 Sinusoidal ridges; constant wind speed and stability.............................. 62
4.3.2 Isolated mountain; constant wind speed and stability............................. 63
4.3.3 Vertical variations in wind speed and stability .................................. 65
4.4 Downslope windstorms ......................................................... 66
4.4.1 Three explanations for the production of severe downslope winds ................... 66
4.4.2 A comparison of the hydraulic and the vertically propagating wave theories ........... 69
4.4.3 A comparison of the hydraulic and the wave-breaking mechanisms.................. 71
4.4.4 Forecasting downslope winds................................................ 74
4.4.5 Gustiness near the surface in downslope winds .................................. 76
4.5 Flow over isolated mountains .................................................... 78
Acknowledgments .................................................................. 81
Chapter 5. Fluid Mechanics of Airflow over Hills: Turbulence, Fluxes, and Waves in the Boundary Layer
—D. J. Carruthers and J. C. R. Hunt ......................................... 83
ABSTRACT ...................................................................... 83
5.1 Introduction .................................................................. 83
5.1.1 Overview ................................................................ 83
5.1.2 Classification of flow regimes................................................ 84
5.1.2.1 Stratification effects............................................ 84
5.1.2.2 Rotation effects................................................. 85
5.1.2.3 Roughness changes .............................................. 85
5.2 Modeling of turbulent airflow over hills ............................................ 85
5.2.1 Linear analysis........................................................... 86
5.2.1.1 General equations............................................... 86
5.2.1.2 Inner region solution ............................................ 86
5.2.1.3 Middle layer solution ........................................... 87
5.2.1.4 Upper layer solution ............................................ 87
5.2.1.5 Surface roughness effects ....................................... 88
5.3 Effects of stratification .......................................................... 88
5.3.1 Uniform stratification...................................................... 89
5.3.2 More complex stability profiles .............................................. 89
CONTENTS
5.3.3 Elevated inversion above neutral boundary layer ................................ 90
5.3.4 Strong stratification; large aspect ratios........................................ 91
5.4 Turbulence ................................................................... 91
5.5 Numerical models and flow over complex terrain .................................... 93
5.5.7 Isolated hills ............................................................. 93
5.5.2 Complex terrain .......................................................... 94
5.6 Dispersion and deposition over complex terrain ..................................... 95
5.6.1 Overview and key processes ................................................. 95
5.6.2 Localized sources near hills ................................................. 96
5.6.2.1 Idealized hill shape [EPA-CTDM model (Paine et al. 1987)] ........... 98
5.6.2.2 Fourier analysis of hill shapes.................................... 98
5.6.3 Dispersion and deposition over terrain for well-mixed scalars ...................... 98
5.6.4 Temperature and humidity fields............................................. 102
5.7 Discussion.................................................................... 103
Acknowledgments .................................................................. 103
APPENDIX: Why Can t Stably Stratified Air Rise over High Ground?
—Ronald B. Smith ............................................................... 105
5.A. 1 Introduction............................................................. 105
5.A.2 Combining the hydrostatic and Bernoulli equations ............................. 105
5.A.3 Application ............................................................. 107
5.A.4 Conclusion .............................................................. 107
Acknowledgments .............................................................. 107
Chapter 6. Rugged Terrain Effects on Diffusion
—Steven R. Hanna and David G. Strimaitis ................................... 109
6.1 Introduction .................................................................. 109
6.1.1 Problems ................................................................ 109
6.1.2 Overview of history of research............................................... 110
6.2 Summary of EPA models and evaluations .......................................... Ill
6.2.1 Model descriptions ........................................................ Ill
6.2.2 Evaluations of regulatory models............................................. 113
6.2.2.1 EPA EVALUATION AT LUKE MILL AND CINDER CONE BUTTE .............. 113
6.2.2.2 Evaluation of COMPLEX I and RTDM at Widows Creek ............ 114
6.3 Theories and experiments regarding diffusion over slopes and valleys .................... 114
6.3.1 Diffusion models for slope flows.............................................. 115
6.3.2 Diffusion models for narrow valleys........................................... 116
6.3.3 DOE ASCOT experiments.................................................. 118
6.4 EPA Complex Terrain Model Development (CTMD) Program ......................... 121
6.4.1 Objectives ............................................................... 121
6.4.2 Fluid modeling ........................................................... 123
6.4.3 Field experiments......................................................... 125
6.4.3.1 Cinder Cone Butte ............................................... 126
6.4.3.2 Hogback Ridge .................................................. 127
6.4.3.3 Tracy Power Plant .............................................. 127
6.4.4 Assumptions contained in the Complex Terrain Dispersion Model (CTDM) .......... 131
6.4.4.1 Dispersion parameters............................................ 133
6.4.4.2 Concentration equation for LIFT (flow above Hd).................. 133
6.4.4.3 Concentration equation for WRAP (flow below Hd)................ 135
6.4.5 Evaluation of CTDM ...................................................... 135
CONTENTS
6.5 Mesoscale flow models that include diffusion algorithms............................... 137
6.5.1 General principles......................................................... 137
6.5.1.1 Approach 1—Lagrangian particle diffusion ....................... 138
6.5.1.2 Approach 2—Use of diffusion equation ............................ 139
6.5.2 Evaluation of mesoscale grid-based diffusion models in rugged terrain ............... 141
6.6 Summary of findings and recommendations ........................................ 141
Acknowledgments .................................................................. 142
Chapter 7. Fluid Dynamics of Flow over Hills/Mountains—Insights Obtained through Physical Modeling
—Robert N. Meroney....................................................... 145
ABSTRACT ...................................................................... 145
7.1 Introduction .................................................................. 145
7.1.1 Advantages and disadvantages of fluid modeling ................................ 145
7.1.2 Historical perspectives ..................................................... 146
7.2 Similarity considerations ........................................................ 146
7.2.1 Similitude parameters ..................................................... 147
7.2.2 Partial simulation of complex terrain flows..................................... 147
7.2.3 Performance envelopes for fluid modeling ...................................... 148
7.2.3.1 Neutral airflow models ......................................... 149
7.2.3.2 Valley drainage flows ........................................... 150
7.2.3.3 Verification evidence ............................................ 150
7.3 Facilities for fluid modeling of complex terrain meteorology............................ 150
7.3.1 Wind tunnels............................................................. 151
7.3.2 Drainage flow facilities..................................................... 151
7.3.3 Water channels and rotating tanks ........................................... 151
7.3.4 Instrumentation .......................................................... 152
7.4 Neutral flow over hills, ramps, and escarpments ..................................... 152
7.4.1 Idealized two-dimensional terrain flow studies .................................. 152
7.4.1.1 Effects of ridge shape ............................................ 153
7.4.1.2 Effects of turbulence............................................ 155
7.4.1.3 Effects of surface roughness..................................... 155
7.4.2 Idealized three-dimensional terrain flow studies................................. 156
7.4.3 Field/laboratory comparisons ............................................... 157
7.4.3.1 Rakaia River Gorge, New Zealand ................................ 158
7.4.3.2 Gebbies Pass, Banks Peninsula, New Zealand ....................... 158
7.4.3.3 Kahuku Point, Oahu, Hawaii...................................... 159
7.4.3.4 Askervein Hill project, Outer Hebrides, Scotland ................. 159
7.4.4 Conclusions from neutral airflow terrain studies................................. 160
7.5 Stratified flow over hills and ramps ................................................ 161
7.5.1 Idealized two-dimensional flow domains for waves and blocking.................... 161
7.5.2 Downslope winds, valley flows induced by crosswinds ............................ 162
7.5.3 Idealized three-dimensional terrain studies..................................... 163
7.5.4 Field/laboratory comparisons ............................................... 165
7.5.5 Conclusions from stratified airflow terrain studies ............................... 166
7.6 Drainage flow phenomena ....................................................... 167
7.7 Diffusion phenomena in complex terrain ........................................... 168
7.8 Summary .................................................................... 171
CONTENTS
Chapter 8. Remote Sensing of Atmospheric Processes over Complex Terrain
—W. D. Neff ............................................................... 173
ABSTRACT ...................................................................... 173
8.1 Introduction .................................................................. 173
8.2 Remote sensing techniques ...................................................... 174
8.2.1 Scattering mechanisms..................................................... 174
8.2.2 The role of turbulence microstructure in remote sensing........................... 175
8.2.2.1 Statically unstable conditions ................................... 176
8.2.2.2 Statically stable conditions ..................................... 176
8.2.3 Sampling geometries ...................................................... 177
8.2.3.1 Fixed-beam systems ............................................... 177
8.2.3.2 Scanning systems ................................................ 180
8.2.4 Instruments.............................................................. 181
8.2.4.1 Sodars .......................................................... 181
8.2.4.2 Radars .......................................................... 182
8.2.4.3 Aerosol-mapping lidars........................................... 183
8.2.4.4 Doppler lidars................................................... 184
8.2.4.5 Optical crosswind sensors ........................................ 185
8.3 Major complex terrain field studies using remote sensors .............................. 185
8.3.1 Atmospheric Studies in Complex Terrain (ASCOT) Program ...................... 185
8.3.2 EPA Complex Terrain Model Development (CTMD) Program ..................... 187
8.3.3 Urban and regional air quality studies ........................................ 187
8.4 Application of remote and in-situ instrumentation to complex terrain studies—case studies . . 188
8.4.1 Sodar observations of simple drainage flows .................................... 188
8.4.2 Sodar observation of complex drainages and their interaction with ambient flows ...... 191
8.4.2.1 The role of differential acceleration of air masses in echo creation 191
8.4.2.2 entrapment by the external wind—turbulence and instability .... 193
8.4.3 Remote sensor observation of waves in complex terrain ........................... 194
8.4.3.1 Long-period oscillations observed in complex terrain flows........ 195
8.4.3.2 Scale analysis ................................................... 196
8.4.3.3 Surface wind analysis ............................................ 196
8.4.3.4 Waves associated with flow over ridges and mountains ............ 199
8.4.4 Volume flux in simple drainage flows ......................................... 200
8.4.5 Main canyon mass fluxes and merging ........................................ 203
8.4.5.1 lidar data analysis and correction ............................... 203
8.4.5.2 Volume flux growth and the role of tributaries .................. 205
8.4.5.3 The merging of drainage flows from valleys with different
physical characteristics ......................................... 205
8.4.5.4 Comparison of lidar observations with other measurement methods
in complex terrain ............................................... 208
8.4.6 The role of remote and in-situ sensors in the study of elevated plumes during
the 1984 CTMD experiment ................................................ 209
8.4.6.1 Background..................................................... 209
8.4.6.2 Lidar aerosol plume mapping ..................................... 209
8.4.6.3 Complex terrain processes affecting plume transport and dispersion 209
8.4.6.4 Interpretation of elevated plumes ................................ 211
8.4.7 Interpretation of ground-based plumes during the 1980 ASCOT experiment .......... 212
8.4.8 Remote-sensor observation ofday/night transitions in complex terrain ............... 212
8.4.8.1 Background..................................................... 212
contents
8.4.8.2 sodar observations of nocturnal inversion destruction ........... 213
8.4.8.3 Lidar observations of morning flow reversals .................... 214
8.4.8.4 The evening transition to nocturnal drainage in a confined valley 215
8.4.8.5 The evening transition and the emergence of drainage flows onto
PLAINS ........................................................... 216
8.5 The use of remote sensors in large-scale complex terrain flows .......................... 220
5.5. / Large-scale drainage flows.................................................. 221
8.5.2 Denver Brown Cloud Study ................................................. 222
8.5.2.1 DOPPLER LIDAR OBSERVATIONS....................................... 223
8.5.2.2 RASS observations ............................................... 224
8.6 Summary and future possibilities ................................................. 226
Acknowledgments .................................................................. 228
Chapter 9. The Role of Mountain Flows in Making Clouds
—Robert M. Banta 229
ABSTRACT ...................................................................... 229
9.1 Introduction .................................................................. 229
9.2 Condensation and stability effects ................................................. 230
9.2.1 Condensation ............................................................ 230
9.2.2 Lifting profiles............................................................ 231
9.2.3 Stability effects on cloud forms............................................... 233
9.2.4 Interactional effects........................................................ 234
9.3 Fog, stable clouds, and unstable snow clouds ........................................ 236
9.3.1 Valley fog ............................................................... 236
9.3.2 Stable rain clouds......................................................... 236
9.3.2.1 Orographic stratus.............................................. 238
9.3.2.1.1 Simple orographic flow ...................................... 238
9.3.2.1.2 Microphysics .............................................. 238
9.3.2.1.3 Blocking.................................................. 240
9.3.2.1.4 Mountain-wave effects....................................... 241
9.3.2.1.5 Radiation................................................. 241
9.3.2.1.6 Other upslope flows ......................................... 242
9.3.2.2 Interaction with larger-scale processes .......................... 243
9.3.3 Stable snow clouds ........................................................ 244
9.3.3.1 Orographic stratus.............................................. 244
9.3.3.2 Interaction with larger-scale processes .......................... 247
9.3.4 Unstable snow clouds ...................................................... 248
9.4 Unstable rain clouds............................................................ 248
9.4.1 Initiation mechanisms ..................................................... 249
9.4.1.1 Direct lifting to the lfc ......................................... 250
9.4.1.1.1 Potential instability release................................... 250
9.4.1.1.2 Flash flooding ............................................. 250
9.4.1.2 Thermally generated mountain circulations ..................... 254
9.4.1.2.1 Heat flux and soil moisture effects ............................. 256
9.4.1.2.2 Regional differences......................................... 256
9.4.1.2.3 Spatial and temporal distribution .............................. 257
9.4.1.2.4 Isolated peaks and small ranges ............................... 258
9.4.1.2.5 Larger ranges of mountains .................................. 262
CONTENTS
9.4.1.2.6 Ambient wind effects on thermally forced mechanisms ............. 263
9.4.1.2.7 Discussion ................................................ 264
9.4.1.3 Obstacle (aerodynamic) effects ................................... 265
9.4.1.3.1 Blocking.................................................. 266
9.4.1.3.2 Flow deflection............................................. 266
9.4.1.3.3 Gravity-wave effects ......................................... 267
9.4.2 Conditional instability ..................................................... 268
9.4.3 Moisture sources.......................................................... 268
9.4.4 Structures and transitions................................................... 269
9.4.4.1 Dry circulations ................................................ 270
9.4.4.2 Cumulus and cumulus congestus ................................. 275
9.4.4.3 Cumulonimbus ................................................... 276
9.4.5 Roles for large-scale forcing ................................................. 277
9.4.6 Discussion............................................................... 281
9.5 Conclusions .................................................................. 282
Chapter 10. Predictability of Flows over Complex Terrain
—J. Paegle, Roger A. Pielke, G. A. Dalu, W. Miller, J. R. Garratt, T. Vukjcevic
G. Berri and M. Nicolini.................................................... 285
ABSTRACT ...................................................................... 285
10.1 Overview of concepts of chaos and relation to predictability ............................ 285
10.2 Predictability studies on the synoptic and global scales ................................ 286
10.2.1 Predictability theory for large scales .......................................... 286
10.2.2 Global experiments........................................................ 287
10.2.3 Predictability experiments in limited area domains .............................. 288
10.3 Predictability studies of turbulence and clouds....................................... 289
10.4 Analysis of limited domain predictability ........................................... 290
10.4.1 Theoretical considerations .................................................. 290
10.4.2 Predictability of highly forced and dissipated flows............................... 292
10.4.3 Predictability on small scales ................................................ 294
10.4.4 Spread of lateral boundary errors ............................................ 295
10.5 Contrast between average and realization parameterization in mesoscale models ........... 297
10.6 Conclusions .................................................................. 298
Acknowledgments .................................................................. 299
References ............................................................................ 301
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV012668764 |
callnumber-first | Q - Science |
callnumber-label | QC880 |
callnumber-raw | QC880.4.A8 |
callnumber-search | QC880.4.A8 |
callnumber-sort | QC 3880.4 A8 |
callnumber-subject | QC - Physics |
ctrlnum | (OCoLC)22173381 (DE-599)BVBBV012668764 |
dewey-full | 551.523 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.523 |
dewey-search | 551.523 |
dewey-sort | 3551.523 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01566nam a2200409 cb4500</leader><controlfield tag="001">BV012668764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990720s1990 abd| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1878220012</subfield><subfield code="9">1-878220-01-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)22173381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012668764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC880.4.A8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.523</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atmospheric processes over complex terrain</subfield><subfield code="c">Robert M. Banta ... . William Blumen, ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass.</subfield><subfield code="b">American Meteorological Society</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 323 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Meteorological monographs</subfield><subfield code="v">45 = Vol.23</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circulation atmosphérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climat de montagne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Météorologie dynamique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temps (Météorologie), Effets des montagnes sur le</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mountain climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mountain wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weather</subfield><subfield code="x">Effect of mountains on</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banta, Robert M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blumen, William</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Meteorological monographs</subfield><subfield code="v">45 = Vol.23</subfield><subfield code="w">(DE-604)BV002536864</subfield><subfield code="9">45</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008609427&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008609427</subfield></datafield></record></collection> |
id | DE-604.BV012668764 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:31:36Z |
institution | BVB |
isbn | 1878220012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008609427 |
oclc_num | 22173381 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-634 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-634 DE-188 |
physical | XIII, 323 S. Ill., graph. Darst., Kt. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | American Meteorological Society |
record_format | marc |
series | Meteorological monographs |
series2 | Meteorological monographs |
spelling | Atmospheric processes over complex terrain Robert M. Banta ... . William Blumen, ed. Boston, Mass. American Meteorological Society 1990 XIII, 323 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Meteorological monographs 45 = Vol.23 Circulation atmosphérique Climat de montagne Météorologie dynamique Temps (Météorologie), Effets des montagnes sur le Mountain climate Mountain wave Weather Effect of mountains on Banta, Robert M. Sonstige oth Blumen, William Sonstige oth Meteorological monographs 45 = Vol.23 (DE-604)BV002536864 45 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008609427&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Atmospheric processes over complex terrain Meteorological monographs Circulation atmosphérique Climat de montagne Météorologie dynamique Temps (Météorologie), Effets des montagnes sur le Mountain climate Mountain wave Weather Effect of mountains on |
title | Atmospheric processes over complex terrain |
title_auth | Atmospheric processes over complex terrain |
title_exact_search | Atmospheric processes over complex terrain |
title_full | Atmospheric processes over complex terrain Robert M. Banta ... . William Blumen, ed. |
title_fullStr | Atmospheric processes over complex terrain Robert M. Banta ... . William Blumen, ed. |
title_full_unstemmed | Atmospheric processes over complex terrain Robert M. Banta ... . William Blumen, ed. |
title_short | Atmospheric processes over complex terrain |
title_sort | atmospheric processes over complex terrain |
topic | Circulation atmosphérique Climat de montagne Météorologie dynamique Temps (Météorologie), Effets des montagnes sur le Mountain climate Mountain wave Weather Effect of mountains on |
topic_facet | Circulation atmosphérique Climat de montagne Météorologie dynamique Temps (Météorologie), Effets des montagnes sur le Mountain climate Mountain wave Weather Effect of mountains on |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008609427&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002536864 |
work_keys_str_mv | AT bantarobertm atmosphericprocessesovercomplexterrain AT blumenwilliam atmosphericprocessesovercomplexterrain |