Analysis of divergence: control and management of divergent processes
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | German |
Veröffentlicht: |
Boston ; Berlin [u.a.]
Birkhäuser
1999
|
Schriftenreihe: | Applied and numerical harmonic analysis
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 567 S. Ill., graph. Darst. |
ISBN: | 3764340584 0817640584 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012430964 | ||
003 | DE-604 | ||
005 | 20150218 | ||
007 | t | ||
008 | 990223s1999 gw ad|| |||| 10||| ger d | ||
020 | |a 3764340584 |c (Basel ...) Pp. : sfr 138.00 |9 3-7643-4058-4 | ||
020 | |a 0817640584 |c (Boston) Pp. |9 0-8176-4058-4 | ||
035 | |a (OCoLC)40043554 | ||
035 | |a (DE-599)BVBBV012430964 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-824 |a DE-703 |a DE-355 |a DE-188 | ||
050 | 0 | |a QA402.3 | |
082 | 0 | |a 629.8/312 |2 21 | |
084 | |a SD 1997 |0 (DE-625)142731: |2 rvk | ||
084 | |a MAT 605f |2 stub | ||
245 | 1 | 0 | |a Analysis of divergence |b control and management of divergent processes |c William O. Bray ... eds. |
264 | 1 | |a Boston ; Berlin [u.a.] |b Birkhäuser |c 1999 | |
300 | |a XX, 567 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Applied and numerical harmonic analysis | |
500 | |a Literaturangaben | ||
650 | 4 | |a Asymptotic expansions | |
650 | 4 | |a Control theory | |
650 | 4 | |a Divergent series | |
650 | 0 | 7 | |a Asymptotische Entwicklung |0 (DE-588)4112609-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Summierbarkeit |0 (DE-588)4294383-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvergenz |0 (DE-588)4032326-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multiplikator |0 (DE-588)4040703-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Divergente Reihe |0 (DE-588)4150307-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integraloperator |0 (DE-588)4131247-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singuläres Integral |0 (DE-588)4181533-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1997 |z Orono Me. |2 gnd-content | |
689 | 0 | 0 | |a Divergente Reihe |0 (DE-588)4150307-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Summierbarkeit |0 (DE-588)4294383-8 |D s |
689 | 1 | 1 | |a Konvergenz |0 (DE-588)4032326-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Singuläres Integral |0 (DE-588)4181533-6 |D s |
689 | 2 | 1 | |a Multiplikator |0 (DE-588)4040703-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Integraloperator |0 (DE-588)4131247-8 |D s |
689 | 3 | 1 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Asymptotische Entwicklung |0 (DE-588)4112609-9 |D s |
689 | 4 | |5 DE-604 | |
700 | 1 | |a Bray, William O. |e Sonstige |4 oth | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008435701&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008435701 |
Datensatz im Suchindex
_version_ | 1804127069378969600 |
---|---|
adam_text | WILLIAM O. BRAY CASLAV V. STANOJEVIC EDITORS ANALYSIS OF DIVERGENCE
CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES BIRKHAEUSER BOSTON * BASEL
* BERLIN CONTENTS PREFACE XV CONTRIBUTORS XVII OVERVIEW 1 W. 0. BRAY, C.
V. STANOJEVIC 1 I CONVERGENCE AND SUMMABILITY 11 1 TAUBERIAN THEOREMS
FOR GENERALIZED ABELIAN SUMMABILITY METHODS C. V. STANOJEVIC, I. CANAK,
V. B. STANOJEVIC 13 1.1 INTRODUCTION 13 1.2 A GENERAL SUMMABILITY METHOD
16 1.3 GENERALIZED ABEL S SUMMABILITY METHODS 20 2 SERIES SUMMABILITY OF
COMPLETE BIORTHOGONAL SEQUENCES W. H. RUCKLE 27 2.1 INTRODUCTION 27 2.2
PRELIMINARIES 28 2.2.1 BIORTHOGONAL SEQUENCES 28 2.2.2 SEQUENCE SPACES
29 2.2.3 THE BETA-PHI TOPOLOGY ON A SEQUENCE SPACE . . . . 30 2.2.4
BIORTHOGONAL SEQUENCES AND SEQUENCE SPACES . . . . 31 2.2.5 MULTIPLIER
ALGEBRAS, SUMS, AND SUM SPACES 31 2.2.6 CONVERGENCE PROPERTIES OF
SEQUENCE SPACES 32 2.3 SUMS AND SUM SPACES 32 2.3.1 SUMS 32 2.3.2 SUM
SPACES 33 2.4 INCLUSION THEOREMS 37 3 GROWTH OF CESAERO MEANS OF DOUBLE
VILENKIN-FOURIER SERIES OF UNBOUNDED TYPE W.R. WADE 41 3.1 INTRODUCTION
41 3.2 FUNDAMENTAL CONCEPTS AND NOTATION 42 3.3 THE VILENKIN-FEJER
KERNEL 43 VIII CONTENTS 3.4 THE MAIN RESULTS 45 4 A SUBSTITUTE FOR
SUMMABILITY IN WAVELET EXPANSIONS G. G. WALTER, X. SHEN 51 4.1
INTRODUCTION 51 4.2 BACKGROUND 52 4.3 SUMMABILITY FOR WAVELETS WITH
COMPACT SUPPORT 53 4.4 THE PROPERTIES OF THE SUMMABILITY FUNCTION 56
4.4.1 THE RATE OF DECREASE OF THE FILTER COEFHCIENTS 56 4.4.2 THE
CALCULATION OF THE POSITIVE ESTIMATION F^(T) ... 59 5 EXPANSIONS IN
SERIES OF LEGENDRE FUNCTIONS E. R. LOVE, M. N. HUNTER 65 5.1
INTRODUCTION 65 5.2 PRELIMINARIES AND KNOWN RESULTS 66 5.2.1 CHRISTOFFEL
SUMMATION FORMULA 66 5.2.2 STIELTJES S INEQUALITY 66 5.2.3
RIEMANN-LEBESGUE-TYPE THEOREM 67 5.2.4 SINGULAR INTEGRALS 67 5.3
NEUMANN S INTEGRAL AND CONSEQUENCES 68 5.4 HUNTER S IDENTITIES 71 6
ENDPOINT CONVERGENCE OF LEGENDRE SERIES M. A. PINSKY 79 6.1 STATEMENT OF
RESULTS 79 6.2 ASYMPTOTIC ESTIMATES 80 6.3 CONVERGENCE AT THE ENDPOINTS
83 6.3.1 CONVERGENCE AT X = 1 83 6.3.2 CONVERGENCE AT X * * 1 84 7
INVERSION OF THE HOROCYCLE TRANSFOERM ON REAL HYPERBOLIC SPACES VIA A
WAVELET-LIKE TRANSFOERM W. 0. BRAY, B. RUBIN 87 7.1 INTRODUCTION 87 7.2
PRELIMINARIES 88 7.2.1 ALGEBRAIC AND GEOMETRIC NOTIONS 88 7.2.2 THE
HOROCYCLE TRANSFOERM AND ITS DUAL 90 7.2.3 APPROXIMATE IDENTITIES ON H 93
7.3 INVERSION OF THE HOROCYCLE TRANSFORM 95 8 FOURIER-BESSEL EXPANSIONS
WITH GENERAL BOUNDARY CONDI- TIONS M. A. PINSKY 107 8.1 INTRODUCTION 107
8.2 STATEMENT OF RESULTS 108 CONTENTS IX 8.3 PROOFS 109 8.4 IDENTIFYING
THE LIMIT 113 8.4.1 AN ABELIAN LEMMA 114 II SINGULAR INTEGRALS AND
MULTIPLIERS 117 9 CONVOLUTION CALDEROEN-ZYGMUND SINGULAR INTEGRAL
OPERATORS WITH ROUGH KERNEIS L. GRAFAKOS, A. STEFANOV 119 9.1
INTRODUCTION 119 9.2 L? BOUNDEDNESS 121 9.3 LP BOUNDEDNESS, 1 P OO
123 9.4 THE L 1 THEORY 126 9.5 ANOTHER H 1 CONDITION IN DIMENSION 2 133
9.6 MAXIMAL FUNCTIONS AND MAXIMAL SINGULAR INTEGRALS 134 10 HAAR
MULTIPLIERS, PARAPRODUCTS, AND WEIGHTED INEQUALITIES N. H. KATZ, M. C.
PEREYRA 145 10.1 INTRODUCTION 145 10.2 PRELIMINARIES 148 10.2.1 DYADIC
INTERVALS AND HAAR BASIS 148 10.2.2 WEIGHTS 149 10.3 WEIGHT LEMMA AND
DECAYING STOPPING TIMES 151 10.4 LP LEMMAS FOR DECAYING STOPPING TIMES
157 10.4.1 LP PLANCHEREI LEMMA 157 10.4.2 LP VERSION OF COTLAR S LEMMA
160 10.5 BOUNDEDNESS OF TT 161 10.5.1 BOUNDEDNESS OF T U 161 10.5.2 SOME
COROLLARIES 165 10.6 HAAR MULTIPLIERS AND WEIGHTED INEQUALITIES 166 11
MULTIPLIERS AND SQUARE FUNCTIONS FOR H P SPACES OVER VILENKIN GROUPS J.
E. DALY, K. L. PHILLIPS 171 11.1 INTRODUCTION 171 11.2 HISTORICAL
COMMENTS 172 11.3 MULTIPLIERS FOR W (0
11.4 SQUARE FUNCTION CHARACTERIZATION OF H P 181 12 SPECTRA OF
PSEUDO-DIFFERENTIAL OPERATORS IN THE HOERMANDER CLASS J. ALVAREZ 187 12.1
INTRODUCTION 187 12.2 PRELIMINARY RESULTS 189 X CONTENTS 12.3 THE IV P
-SPECTRUM OF TRANSLATION INVARIANT PSEUDO-DIFFERENTIAL OPERATORS 191
12.4 THE SET K A 192 12.5 APPLICATIONS 194 13 SCALING PROPERTIES OF
INFINITELY FLAT CURVES AND SURFACES A. IOSEVICH 201 13.1 INTRODUCTION
201 13.2 SCALING 204 13.2.1 SIMPLIFICATION 206 13.2.2 THREE DIMENSIONS
207 13.3 ORLICZ NORMS OF DILATION OPERATORS 208 13.4 EXAMPLES 210 14
SOME L P (L)* AND L 2 (L 2 )* ESTIMATES FOR OSCILLATORY FOURIER
TRANSFORMS B. WALTHER 213 14.1 INTRODUCTION 213 14.2 L P (L)-ESTIMATES
215 14.3 L 2 (L 2 )-ESTIMATES 221 15 OPTIMAL SPACES FOR THE
S -CONVOLUTION WITH THE MARCEL RIESZ KERNEIS AND THE IV-DIMENSIONAL
HUBERT KERNEL J. ALVAREZ, C. CARTON-LEBRUN 233 15.1 INTRODUCTION 233
15.2 DEFINITIONS AND NOTATION 234 15.2.1 FUNCTION AND DISTRIBUTION
SPACES 235 15.2.2 THE S -CONVOLUTION 236 15.2.3 PARTITION OF UNITY ON
E 236 15.3 OPTIMAL SPACE FOR THE KERNEL 237 15.4 OPTIMAL SPACE FOR THE
5 -CONVOLUTION WITH PV-- * * * 240 15.5 NECESSARY CONDITION FOR THE
IS -CONVOLVABILITY WITH A SINGLE RIESZ KERNEL 244 III INTEGRAL OPERATORS
AND FUNCTIONAL ANALYSIS 249 16 ASYMPTOTIC EXPANSIONS AND LINEAR WAVELET
PACKETS ON CER- TAIN HYPERGROUPS K. TRIMECHE 251 16.1 INTRODUCTION 251
16.2 THE CHEBLI-TRIMECHE HYPERGROUPS (R + ,* A ) 252 16.3 THE DUAL OF
THE HYPERGROUPS (R, *A) 255 CONTENTS XI 16.4 ASYMPTOTIC EXPANSIONS AND
INTEGRAL REPRESENTATIONS OF MEHLER AND SCHLAEFLI TYPE 258 16.4.1 THE
ASYMPTOTIC EXPANSIONS 258 16.4.2 INTEGRAL REPRESENTATIONS OF MEHLER AND
SCHLAEFLI TYPE . 262 16.5 HARMONIE ANALYSIS AND MAXIMAL IDEAL SPACES OF
SOME ALGEBRAS265 16.5.1 HARMONIE ANALYSIS 265 16.5.2 THE MAXIMAL IDEAL
SPACES OF THE ALGEBRAS LNJUA) AND M 6 (M+) 270 16.6 CONTINUOUS LINEAR
WAVELET TRANSFORM AND ITS DISCRETIZATION . 272 16.6.1 LINEAR WAVELETS ON
(R + ,*^) 272 16.6.2 LINEAR WAVELET PACKET ON (R+,* A) 282 16.6.3 SCALE
DISCRETE L-SCALING FUNETION ON (R + ,*YI) . . . . 287 17 HARDY-TYPE
INEQUALITIES FOR A NEW CLASS OF INTEGRAL OPERA- TORS G. SINNAMON 297
17.1 INTRODUCTION 297 17.2 STARSHAPED REGIONS 298 17.3 PROM REGIONS TO
KERNEIS 304 18 REGULARLY BOUNDED FUNETIONS AND HARDY S INEQUALITY T.
OSTROGORSKI 309 18.1 INTRODUCTION 309 18.2 DEFINITION AND UNIFORM
BOUNDEDNESS 310 18.3 THE GLOBAL BOUNDS 314 18.4 THE REPRESENTATION
THEOREM 315 18.5 THE MULTIPLICATIVE CLASS 317 18.6 ABELIAN THEOREMS 319
18.7 HARDY S INEQUALITY 321 19 EXTREMAL PROBLEMS IN GENERALIZED SOBOLEV
CLASSES S. K. BAGDASAROV 327 19.1 INTRODUCTION 327 19.1.1 GENERAL
PROBLEM OF SHARP INEQUALITIES FOR INTERMEDI- ATE DERIVATIVES 327 19.1.2
PUNCTIONAL CLASSES W R H U (J) 329 19.1.3 THE KOLMOGOROV PROBLEM IN W R
H U (L) 330 19.2 MAXIMIZATION OF INTEGRAL FUNCTIONALS OVER H^LA, B] 330
19.2.1 SIMPLE KERNEIS *(*) AND THEIR REARRANGEMENTS 5R(*; *) 331 19.2.2
THE KORNEICHUK LEMMA 332 19.2.3 EXTREMAL FUNETIONS OF FUNCTIONALS OVER
H [A, B] . . . 333 19.2.4 STRUCTURAL PROPERTIES OF EXTREMAL FUNETIONS
X^^ . . 337 19.3 KOLMOGOROV PROBLEM FOR INTERMEDIATE DERIVATIVES 342
19.3.1 DIFFERENTIATION FORMULAE FOR / (M) (0), 0 . 343 19.3.2
DIFFERENTIATION FORMULA FOR/( R )(0) 343 XII CONTENTS 19.3.3 SUFFICIENT
CONDITIONS OF EXTREMALITY 344 19.3.4 EXTREMALITY CONDITIONS IN THE FORM
OF AN OPERATOR EQUATION 344 19.3.5 SHARP ADDITIVE INEQUALITIES FOR
INTERMEDIATE DERIVATIVES345 19.3.6 KOLMOGOROV PROBLEM IN HOLDER CLASSES
347 19.4 KOLMOGOROV PROBLEM IN W 1 H U (R + ) AND W 1 H U (R) . . . .
347 19.4.1 PRELIMINARY REMARKS 347 19.4.2 MAXIMIZATION OF THE NORM
||/||I OO (R + ) 348 19.4.3 EXTREMAL FUNCTIONS IN HOLDER CLASSES W 1 H A
(R+) . . 350 19.4.4 MAXIMIZATION OF THE NORM ||/ ||L 00 (R + ) 350
19.4.5 MAXIMIZATION OF THE NORM LL/H IOO ( K ) 352 19.4.6 MAXIMIZATION
OF THE NORM ||/ ^(R) 353 20 ON ANGULARLY PERTURBED LAPLACE EQUATIONS IN
THE UNIT BALL AND THEIR DISTRIBUTIONAL BOUNDARY VALUES P. R. MASSOPUST
359 20.1 INTRODUCTION 359 20.2 NOTATION AND PRELIMINARIES 360 20.3
BOUNDED SOLUTIONS ON B N+2 362 20.4 DISTRIBUTIONAL BOUNDARY VALUES 372
20.5 GENERALITIES 376 21 NONRESONANT SEMILINEAR EQUATIONS AND
APPLICATIONS TO BOUND- ARY VALUE PROBLEMS P. S. MILOJEVIC 379 21.1
INTRODUCTION 379 21.2 SEMI-ABSTRACT NONRESONANCE PROBLEMS 380 21.3
STRONG SOLVABILITY OF ELLIPTIC BVP S 390 21.4 TIME PERIODIC SOLUTIONS OF
BVP S FOR NONLINEAR PARABOLIC AND HYPERBOLIC EQUATIONS 394 21.4.1
NONLINEAR PARABOLIC EQUATIONS 394 21.4.2 APPLICATIONS TO THE HEAT
EQUATION 396 21.4.3 NONLINEAR HYPERBOLIC EQUTIONS 398 21.4.4
APPLICATIONS TO THE TELEGRAPH EQUATION 400 21.4.5 APPLICATION TO THE
BEAM EQUATION WITH DAMPING. . 401 22 A TOPOLOGICAL AND FIMCTIONAL
ANALYTIC APPROACH TO STATISTICAL CONVERGENCE J. CONNOR 403 22.1
INTRODUCTION: 403 22.2 THE SUPPORT SET OF A MEASURE 406 22.3 INVARIANTS
OF STATISTICAL CONVERGENCE 407 22.4 SUMMABILITY THEOREMS 408 CONTENTS
XIII IV ASYMPTOTICS AND APPLICATIONS 415 23 OPTIMAL CONTROL OF DIVERGENT
CONTROL SYSTEMS D. A. CARLSON 417 23.1 INTRODUCTION AND HISTORY 417 23.2
BASIC MODEIS AND HYPOTHESES 420 23.3 EXISTENCE OF OPTIMAL SOLUTIONS 423
23.3.1 EXISTENCE OF OVERTAKING OPTIMAL SOLUTIONS WITHOUT DIS- COUNTING
423 23.3.2 EXISTENCE OF OVERTAKING OPTIMAL SOLUTIONS WITH DIS- COUNTING
427 23.4 THE ASSOCIATED UNCOUPLED OPTIMAL CONTROL PROBLEMS 429 23.4.1
THE UNDISCOUNTED CASE 429 23.4.2 THE DISCOUNTED CASE 430 23.5 OPTIMAL
SOLUTIONS OF THE EXPLICITLY STATE CONSTRAINED OPTIMAL CONTROL PROBLEM
431 23.5.1 THE UNDISCOUNTED CASE 435 23.6 CONCLUSIONS 437 24 SURFACES
MINIMIZING INTEGRALS OF DIVERGENT INTEGRANDS H. R. PARKS 441 24.1
INTRODUCTION 441 24.2 SURFACES AND INTEGRANDS 443 24.3 OVERTAKING
MINIMIZERS 446 24.4 A RADIALLY SYMMETRIE EXAMPLE 450 24.5 HYPOTHESES FOR
REGULARITY 452 24.6 BARRIERS 453 24.7 A RESULT IN DIFFERENTIAL GEOMETRY
455 24.8 BOUNDING THE CURVATURE 458 25 SPARSE EXPONENTIAL SUMS WITH LOW
SIDELOBES G. BENKE 463 25.1 INTRODUCTION 463 25.2 GENERALIZED
RUDIN-SHAPIRO POLYNOMIALS 465 25.3 EXPONENTIAL SUMS WITH LOW SIDELOBES
469 26 SPLINE TYPE SUMMABILITY FOR MULTIVARIATE SAMPLING W. R. MADYCH
475 26.1 INTRODUCTION 475 26.1.1 SAMPLING THEORY 475 26.1.2 SPLINES AND
SAMPLING THEORY 478 26.1.3 CONTENTS, NOTATION, AND ACKNOWLEDGEMENTS 480
26.2 REGULAER SAMPLING OF MULTIVARIATE FUNETIONS AND THEIR RECOV- ERY VIA
SPLINES 481 26.2.1 BAND LIMITED FUNETIONS AND POLYHARMONIC SPLINES . .
481 XIV CONTENTS 26.2.2 THE SPACES L 2 K (M N ) AND L 2 K (ZZ N )
AND THE VARIA- TIONAL PROPERTIES OF POLYHARMONIC SPLINES 485 26.2.3 THE
PALEY-WIENER SPACE PW% 488 26.2.4 CONVERGENCE OF M-HARMONIC SPLINES AS M
* OO ... 492 26.3 GENERALIZATIONS, RELATED METHODS, AND COMPUTATIONAL
ISSUES 495 26.3.1 GENERALIZATIONS 495 26.3.2 MULTIVARIATE ANALOGUES OF
THE PALEY-WIENER THEOREM AND THE SAMPLING THEOREM 499 26.3.3 BOX SPLINES
501 26.3.4 COMPUTING POLYHARMONIC SPLINES 503 27 SS-SPLINES AND
ORTHONORMAL SETS IN PALEY-WIENER SPACE A. I. ZAYED 513 27.1 INTRODUCTION
513 27.2 PRELIMINARIES: 514 27.3 SAMPLING AND ORTHONORMAL FUNCTIONS 516
27.4 SS-SPLINES AND ORTHONORMAL SETS IN THE PALEY-WIENER SPACE 519 28
NORMS OF POWERS AND A CENTRAL LIMIT THEOREM B. BAISHANSKI 523 28.1
INTRODUCTION 523 28.2 THE FIVE PARAMETERS 524 28.3 BOUNDEDNESS 525
28.3.1 POWER SERIES 525 28.3.2 TRIGONOMETRIE SERIES 527 28.4 ASYMPTOTIC
BEHAVIOR 527 28.5 ASYMPTOTIC SERIES 529 28.6 CHANGING THE QUESTION 532
28.7 BEHAVIOR OF SCALED ^ FOR LARGE N 533 28.8 ANOTHER KIND OF CENTRAL
LIMIT THEOREMS 538 29 QUASIASYMPTOTICS AT ZERO AND NONLINEAR PROBLEMS IN
A FRAME- WORK OF COLOMBEAU GENERALIZED FUNETIONS S. PILIPOVIC, M.
STOJANOVIC 545 29.1 INTRODUCTION 545 29.2 ALGEBRA OF GENERALIZED
FUNETIONS 547 29.3 ^/-QUASIASYMPTOTICS AT ZERO 550 29.4 APPLICATION OF Q
QUASIASYMPTOTICS TO GENERALIZED SOLUTIONS . 552 29.4.1 SYSTEM OF
NONLINEAR VOLTERRA INTEGRAL EQUATIONS WITH NON-LIPSCHITZ NONLINEARITY
553 29.4.2 SEMILINEAR HYPERBOLIC SYSTEM 558 29.4.3 NONLINEAR WAVE
EQUATION 560 29.4.4 EULER-LAGRANGE EQUATION 562 29.4.5 GOURSAT PROBLEM
562
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV012430964 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.3 |
callnumber-search | QA402.3 |
callnumber-sort | QA 3402.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SD 1997 |
classification_tum | MAT 605f |
ctrlnum | (OCoLC)40043554 (DE-599)BVBBV012430964 |
dewey-full | 629.8/312 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8/312 |
dewey-search | 629.8/312 |
dewey-sort | 3629.8 3312 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02657nam a2200661 c 4500</leader><controlfield tag="001">BV012430964</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990223s1999 gw ad|| |||| 10||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764340584</subfield><subfield code="c">(Basel ...) Pp. : sfr 138.00</subfield><subfield code="9">3-7643-4058-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817640584</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-4058-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40043554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012430964</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/312</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 1997</subfield><subfield code="0">(DE-625)142731:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of divergence</subfield><subfield code="b">control and management of divergent processes</subfield><subfield code="c">William O. Bray ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Berlin [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 567 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and numerical harmonic analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Divergent series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Entwicklung</subfield><subfield code="0">(DE-588)4112609-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Summierbarkeit</subfield><subfield code="0">(DE-588)4294383-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplikator</subfield><subfield code="0">(DE-588)4040703-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Divergente Reihe</subfield><subfield code="0">(DE-588)4150307-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singuläres Integral</subfield><subfield code="0">(DE-588)4181533-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1997</subfield><subfield code="z">Orono Me.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Divergente Reihe</subfield><subfield code="0">(DE-588)4150307-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Summierbarkeit</subfield><subfield code="0">(DE-588)4294383-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Singuläres Integral</subfield><subfield code="0">(DE-588)4181533-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Multiplikator</subfield><subfield code="0">(DE-588)4040703-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Asymptotische Entwicklung</subfield><subfield code="0">(DE-588)4112609-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bray, William O.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008435701&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008435701</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1997 Orono Me. gnd-content |
genre_facet | Konferenzschrift 1997 Orono Me. |
id | DE-604.BV012430964 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:27:29Z |
institution | BVB |
isbn | 3764340584 0817640584 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008435701 |
oclc_num | 40043554 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-703 DE-355 DE-BY-UBR DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-703 DE-355 DE-BY-UBR DE-188 |
physical | XX, 567 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser |
record_format | marc |
series2 | Applied and numerical harmonic analysis |
spelling | Analysis of divergence control and management of divergent processes William O. Bray ... eds. Boston ; Berlin [u.a.] Birkhäuser 1999 XX, 567 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Applied and numerical harmonic analysis Literaturangaben Asymptotic expansions Control theory Divergent series Asymptotische Entwicklung (DE-588)4112609-9 gnd rswk-swf Summierbarkeit (DE-588)4294383-8 gnd rswk-swf Konvergenz (DE-588)4032326-2 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Multiplikator (DE-588)4040703-2 gnd rswk-swf Divergente Reihe (DE-588)4150307-7 gnd rswk-swf Integraloperator (DE-588)4131247-8 gnd rswk-swf Singuläres Integral (DE-588)4181533-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1997 Orono Me. gnd-content Divergente Reihe (DE-588)4150307-7 s DE-604 Summierbarkeit (DE-588)4294383-8 s Konvergenz (DE-588)4032326-2 s Singuläres Integral (DE-588)4181533-6 s Multiplikator (DE-588)4040703-2 s Integraloperator (DE-588)4131247-8 s Funktionalanalysis (DE-588)4018916-8 s Asymptotische Entwicklung (DE-588)4112609-9 s Bray, William O. Sonstige oth GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008435701&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Analysis of divergence control and management of divergent processes Asymptotic expansions Control theory Divergent series Asymptotische Entwicklung (DE-588)4112609-9 gnd Summierbarkeit (DE-588)4294383-8 gnd Konvergenz (DE-588)4032326-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Multiplikator (DE-588)4040703-2 gnd Divergente Reihe (DE-588)4150307-7 gnd Integraloperator (DE-588)4131247-8 gnd Singuläres Integral (DE-588)4181533-6 gnd |
subject_GND | (DE-588)4112609-9 (DE-588)4294383-8 (DE-588)4032326-2 (DE-588)4018916-8 (DE-588)4040703-2 (DE-588)4150307-7 (DE-588)4131247-8 (DE-588)4181533-6 (DE-588)1071861417 |
title | Analysis of divergence control and management of divergent processes |
title_auth | Analysis of divergence control and management of divergent processes |
title_exact_search | Analysis of divergence control and management of divergent processes |
title_full | Analysis of divergence control and management of divergent processes William O. Bray ... eds. |
title_fullStr | Analysis of divergence control and management of divergent processes William O. Bray ... eds. |
title_full_unstemmed | Analysis of divergence control and management of divergent processes William O. Bray ... eds. |
title_short | Analysis of divergence |
title_sort | analysis of divergence control and management of divergent processes |
title_sub | control and management of divergent processes |
topic | Asymptotic expansions Control theory Divergent series Asymptotische Entwicklung (DE-588)4112609-9 gnd Summierbarkeit (DE-588)4294383-8 gnd Konvergenz (DE-588)4032326-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Multiplikator (DE-588)4040703-2 gnd Divergente Reihe (DE-588)4150307-7 gnd Integraloperator (DE-588)4131247-8 gnd Singuläres Integral (DE-588)4181533-6 gnd |
topic_facet | Asymptotic expansions Control theory Divergent series Asymptotische Entwicklung Summierbarkeit Konvergenz Funktionalanalysis Multiplikator Divergente Reihe Integraloperator Singuläres Integral Konferenzschrift 1997 Orono Me. |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008435701&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT braywilliamo analysisofdivergencecontrolandmanagementofdivergentprocesses |