Biomedical uses of radiation: A Diagnostic applications
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim [u.a.]
Wiley-VCH
1999
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 623 S. Ill., graph. Darst. |
ISBN: | 3527296689 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV012287940 | ||
003 | DE-604 | ||
005 | 19990412 | ||
007 | t | ||
008 | 981202s1999 ad|| |||| 00||| eng d | ||
020 | |a 3527296689 |9 3-527-29668-9 | ||
035 | |a (OCoLC)313373535 | ||
035 | |a (DE-599)BVBBV012287940 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-578 | ||
084 | |a YR 1600 |0 (DE-625)154086:12905 |2 rvk | ||
084 | |a WN 100 |2 nlm | ||
245 | 1 | 0 | |a Biomedical uses of radiation |n A |p Diagnostic applications |c William R. Hendee (ed.) |
264 | 1 | |a Weinheim [u.a.] |b Wiley-VCH |c 1999 | |
300 | |a XXXV, 623 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Radiologische Diagnostik |0 (DE-588)4048214-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strahlentherapie |0 (DE-588)4057833-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Radiologische Diagnostik |0 (DE-588)4048214-5 |D s |
689 | 0 | 1 | |a Strahlentherapie |0 (DE-588)4057833-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hendee, William R. |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV012287937 |g A |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008331248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008331248 |
Datensatz im Suchindex
_version_ | 1804126912432308224 |
---|---|
adam_text | Contents
Volume A Diagnostic Applications
Preface V
List of Contributors XXXIII
1 Production and Interaction of X rays
Radiation Measurement Quantities and Units 1
1.1 Introduction 3
1.2 Production of X rays 3
1.2.1 Bremsstrahlung and Characteristic Radiation 3
1.2.2 Electron Impact X ray Sources 8
1.2.2.1 Electrical Circuits for X ray Tubes 8
1.2.2.2 Cathodes and Anodes 14
1.2.2.3 Sources for Diagnostic Radiology 18
1.2.2.4 X ray Tube Ratings 20
1.2.2.5 X ray Tube Spectra 22
1.2.2.6 Beam Filtration 29
1.2.2.7 Sources for Mammography 31
1.2.2.8 Specialized Sources for Research 33
1.2.3 Synchrotron X ray Sources 35
1.2.3.1 Storage Rings 35
1.2.3.2 Insertion Devices 43
1.2.3.3 Applications of Synchrotron Sources 45
1.2.4 Plasma X ray Sources 47
1.2.4.1 Gas Plasma Sources 49
1.2 A2 Laser produced Plasma Sources 49
1.2.4.3 Application of Plasma Sources 52
1.2.5 X ray Lasers and Free Electron Lasers 56
1.3 Interaction of X rays with Matter 59
1.3.1 Indirect versus Direct Ionization 61
1.3.2 Scattering 62
1.3.2.1 Elastic Scattering 63
1.3.2.2 Inelastic Compton Scattering 66
1.3.3 Absorption 68
1.3.3.1 Photoelectric Absorption 68
VIII Contents
1.3.3.2 Pair Production 70
1.3.3.3 Photodisintegration 70
1.3.4 Attenuation Cross Sections and the Linear
Attenuation Coefficient 70
1.3.5 Interaction Of X rays with Detector Materials 74
1.3.6 Object, Subject and Image Contrast 75
1.4 Quantities and Units 77
1.4.1 Fundamental Constants, Quantities and Units 78
1.4.2 Particle Fluence and Flux 80
1.4.3 Energy Fluence and Flux 80
1.4.4 Exposure: the Roentgen 81
1.4.5 Absorbed Dose: The Gray the Rad and the Kerma 81
1.4.6 Dose Equivalent: Linear Energy Transfer,
The Quality Factor, the Sievert and the Rem 82
1.5 References 83
2 X ray Imaging: Radiography, Fluoroscopy,
Computed Tomography 97
2.1 Basics of X ray Imaging 99
2.1.1 Introduction 99
2.1.2 Spectrum 99
2.1.3 X ray Attenuation 100
2.1.4 X ray Noise 102
2.1.5 Resolution 103
2.1.6 Contrast 105
2.1.7 Scatter 107
2.1.8 Digital Imaging 107
2.1.9 Summary Approach 108
2.2 Sub components 108
2.2.1 Photographic Film 108
2.2.1.1 Processing 109
2.2.1.2 H D Curve, Reciprocity Failure, and Latent Image Fading . 109
2.2.2 Lenses Electron and Optical HI
2.2.3 Phosphors 112
2.2.3.1 X ray Screens 113
2.2.3.2 Pulse Height Spectra of Phosphors 115
2.2.3.3 Photostimulable Phosphor Screens 116
2.2.3.4 Output Phosphors 117
2.2.4 Electrostatic X ray Transducers 118
2.2.4.1 lonization Chamber 118
2.2.4.2 Photoconductors and Semiconductors 119
2.2.5 Laser Beam Scanning 121
2.2.6 Electron Beam Scanning 122
2.2.7 Vidicons, Great and Small 123
2.2.8 Self scanned Readout Structures 123
2.2.8.1 Photolithography 125
Contents IX
2.2.8.2 Charge Coupled Devices 126
2.2.8.3 Large Area, Thin Film Active Matrix Arrays 128
2.3 Components 130
2.3.1 Fundamentals 130
2.3.1.1 Geometry of Irradiation Pencil, Slit, Slot or Area
and Scatter 130
2.3.1.2 Primary and Secondary Quantum Sink and Noise 131
2.3.1.3 Resolution 133
2.3.1.4 Motion 134
2.3.1.5 Dynamic Range 134
2.3.2 X ray Tube and Generator 135
2.3.3 Grids 136
2.3.4 Film Screen Combinations 138
2.3.5 Computed Radiography 139
2.3.6 X ray Image Intensifier 140
2.3.7 Optical Distributor 141
2.3.8 Video Camera CCD vs. Vidicon 142
2.3.9 Video Monitor 145
2.3.10 Multiformat Camera 147
2.3.11 Laser Camera 147
2.3.12 Dual energy Decomposition Algorithms 147
2.3.13 Tomographic Reconstruction Algorithms 148
2.4 Systems 151
2.4.1 Chest Radiography 151
2.4.1.1 Film Screen 151
2.4.1.2 Equalization 153
2.4.1.3 Computed Radiography 154
2.4.1.4 Other Digital Chest Imaging Methods 155
2.4.2 Fluoroscopy 157
2.4.2.1 Automatic Exposure Control 160
2.4.2.2 Real time Digital Image Processing 161
2.4.2.3 Dose Reduction in Fluoroscopy Region of Interest (ROI) . 162
2.4.2.4 Photofluorography vs. Digital Fluorography 162
2.4.3 Gastrointestinal Imaging 164
2.4.4 Digital Subtraction Angiography (DSA) 165
2.4.5 Mammography, an Exception to Every Rule 166
2.4.6 Motion Tomography 167
2.4.6.1 Linear, Circular and All Sort of Motions 167
2.4.6.2 Motion Tomosynthesis 168
2.4.7 Computed Tomography 169
2.4.7.1 First and Second, Third and Fourth Generation CT 169
2.4.7.2 Spiral Scanning CT 170
2.4.7.3 Cardiac/Electron Beam Source CT 170
2.4.7.4 General CT Facts and Figures 171
2.5 Summary Does X ray Imaging Have a Future? 172
2.6 Acknowledgments 173
X Contents
2.7 References 173
3 Radioactivity, Nuclear Medicine Imaging
and Emission Computed Tomography 175
3.1 Introduction 177
3.2 Fundamentals of Nuclear Physics, Radioisotopes,
Radioactivity 178
3.2.1 Nuclear Physics 178
3.2.1.1 Composition of Atom and Nucleus 178
3.2.1.2 Nuclear Force 179
3.2.2 Radioisotopes 180
3.2.2.1 Alpha (|He) Decay 180
3.2.2.2 Beta Decay (er) 180
3.2.2.3 Beta+ or Positron Decay (e+) 183
3.2.2.4 Isomer Decay 184
3.2.2.5 Electron Capture (K capture) 184
3.2.2.6 Internal Conversion 185
3.2.3 Radioactivity 185
3.2.3.1 Decay Equations 186
3.2.3.2 Half life 186
3.2.3.3 Average (Mean) life x 186
3.2.3.4 Decay of Mixed and Unrelated Radionuclides 187
3.2.3.5 Radioactive Series Growth and Decay 188
3.2.3.6 Parent daughter Decay 189
3.2.4 Production of Radionuclides 190
3.2.4.1 Neutron Activation (Reactor produced) 190
3.2.4.2 Charged Particle Activation (Cyclotron produced) 191
3.2.4.3 Photonuclear Activation 191
3.2.4.4 Radionuclide Generator 192
3.2.4.5 Activation Rate 192
3.3 Principles of Conventional Nuclear Medicine Imaging 193
3.3.1 Introduction 193
3.3.2 Instrumentation 194
3.3.2.1 Radiation Detectors 194
3.3.2.2 Scintillation Cameras Used in Nuclear Medicine Imaging .. . 197
3.3.2.3 Collimators 198
3.3.3 Quantitative Nuclear Medicine Imaging 199
3.4 Principles of Single Photon Emission Computed
Tomography (SPECT) 201
3.4.1 Introduction 201
3.4.2 Instrumentation 201
3.4.2.1 Multiple Detector based SPECT Systems 202
3.4.2.2 Rotating Camera based SPECT Systems 203
3.4.3 Image Reconstruction Techniques 204
3.4.3.1 Analytical Methods 204
3.4.3.2 Iterative Reconstruction Algorithms 205
3.4.4 Quantitative SPECT Methods 206
Contents XI
3.4.4.1 Compensation for Attenuation 206
3.4.4.2 Compensation for Compton Scattered Photons 207
3.5 Principles of Positron Emission Tomography (PET) 208
3.5.1 Introduction 208
3.5.2 Positron Emission and Coincidence Detection 209
3.5.3 Basic PET System Designs 210
3.6 References 212
4 Effects of Biomedical Ionizing Radiation
and Risk Estimation 215
4.1 Introduction 216
4.1.1 Elements of Bioeffects Description 216
4.2 Common Elements of Effects of High
and Low Level Radiation 218
4.2.1 Units of Ionizing Radiation 218
4.2.2 Interactions and Mechanisms of Damage 220
4.3 Effects of High Level Ionizing Radiation 225
4.3.1 Mechanisms of Damage from High Level Ionizing Radiation 225
4.3.2 Cell Survival Curves 226
4.3.3 Effects on Tissues and Organs 228
4.4 Effects of Low Level Ionizing Radiation 232
4.4.1 Mechanisms of Damage from Low Level Ionizing Radiation 232
4.4.2 Carcinogenesis 234
4.4.3 Dose Response Relationships 236
4.4.4 Risk of Carcinogenic Effects 241
4.4.5 Risk of Genetic Effects 252
4.4.6 Risk of Fetal Effects 255
4.4.7 Summary of Risks from Low Level Ionizing Radiation 258
4.5 Conclusion 260
4.6 References 262
5 Radiation Protection and Regulation 265
5.1 Introduction 267
5.2 Quantitative Health Risk Evaluation 267
5.2.1 Hazard Identification 267
5.2.2 Exposure Assessment 268
5.2.3 Exposure Response Assessment 268
5.2.4 Risk Characterization 268
5.3 Radiation Injuries 269
5.4 Human Study Limitations 270
5.5 Early History 272
5.6 Tolerance Dose 274
5.7 Experience with Radium 276
5.8 Genetic Effects 277
5.9 Carcinogenesis 278
5.10 The No Threshold Model 279
XII Contents
5.11 Self Regulation 283
5.12 History of Government Regulation 285
5.12.1 Nuclear Regulatory Commission 285
5.12.2 Federal Radiation Council 286
5.12.3 Other Executive Agencies 287
5.12.4 Environmental Protection Agency 288
5.12.5 Food and Drug Administration 289
5.12.6 State Regulation 290
5.13 The Current Regulatory Framework 291
5.13.1 Nuclear Regulatory Commission 292
5.13.2 The NRC s Medical Use Program 292
5.13.3 Misadministration Rule 293
5.13.4 Quality Management Rule 295
5.13.5 Environmental Protection Agency 297
5.13.6 States 297
5.14 Current Status of Radiation Protection Guidelines 298
5.14.1 Units for Radiation Protection Guidelines 299
5.14.2 Occupational Dose Limits 302
5.14.3 Dose Limits for Members of the Public 305
5.14.4 Negligible Individual Risk Level 305
5.15 No Threshold Model: An Analysis 306
5.15.1 No Threshold Model as an Operational Paradigm 308
5.15.2 Values in Science 310
5.16 Acknowledgements 313
5.17 References 313
6 Radiation Protection Design and Shielding
of Diagnostic X ray Facilities 317
6.1 Introduction 319
6.2 Basic Concepts 321
6.3 New Design Dose Limits 326
6.4. NewDataforShielding 328
6.4.1 Workload and Workload Distribution 328
6.4.2. Use Factors 331
6.4.3 Occupancy Factors 332
6.4.4 Pre shielding of the Primary Beam by the Image Receptor
and Supports 334
6.4.5 Transmission Data 336
6.5 Primary Barriers 348
6.5.1 Computation of Primary Barrier Thickness 348
6.5.2 Example Calculation for Primary Barriers; Floor of a
Radiographic Room Under the Radiographic Table 351
6.6 Secondary Barriers 354
6.6.1 Secondary Radiation 354
6.6.2 Scatter Radiation 355
6.6.3 Leakage Radiation 357
Contents XIII
6.6.4 The Total Secondary Barrier and Secondary Transmission .. 358
6.6.5 Example Calculation for Secondary Barriers;
Cardiac Angiography Laboratory 369
6.7 A General Radiation Barrier 369
6.7.1 Overview 369
6.7.2 Example Calculations for a Radiographic Room 370
6.7.2.1 Secondary Barrier Calculation for the Floor
of a Radiographic Room 371
6.7.2.2 Secondary Barrier Calculation for the Ceiling
of a Radiographic Room 372
6.7.2.3 Primary Barrier Calculation for the Wall Behind
the Chest Bucky 373
6.7.2.4 Secondary Barrier Calculation for the Wall Behind
the Chest Bucky 373
6.7.2.5 Dark Room wall, Protection of X ray Film 374
6.8 Evaluation of Shielding Adequacy 376
6.9 References 376
7 Ultrasound (Including Doppler) 379
7.1 Introduction 381
7.2 Physical Principles of Medical Ultrasound 381
7.2.1 Wave Representation of Mechanical Energy 382
7.2.1.1 Transducer Beam Profile Model 382
7.2.1.2 Scattering Models 383
7.2.2 Concepts Needed for Ultrasound Imaging 384
7.2.2.1 Impedance and Reflections 384
7.2.2.2 Attenuation 387
7.2.2.3 Piezoelectric Transducers 389
7.2.2.4 Transducer Natural Focus 390
7.3 Medical Ultrasound Imaging Equipment Design 391
7.3.1 Brightness Mode Display 392
7.3.1.1 Pre Processing 394
7.3.1.2 Post Processing 395
7.3.2 Transducer Design 396
7.3.2.1 Focusing Single Element Probes 396
7.3.2.2 Matching Layer 397
7.3.2.3 Phased Arrays 397
7.3.2.4 Intercavitary Transducers 399
7.3.3 Real Time Imaging 399
7.4 Ultrasound Imaging Artifacts 400
7.4.1 Variations in Tissue Velocity 400
7.4.2 Attenuation Effects 400
7.4.3 Transducer Caused Artifacts 401
7.4.3.1 Volume Effects 401
7.4.3.2 Apodization 401
7.5 Doppler and Blood Flow Imaging 402
XIV Contents
7.5.1 Continuous Wave Doppler (CW) 403
7.5.2 Pulsed Doppler Systems 404
7.5.2.1 Sample Volume and Doppler Angle 404
7.5.2.2 Wall Filter 405
7.5.2.3 Blood Flow Approximations 405
7.5.2.4 Heterodyne and Quadrature Phase Demodulation 406
7.5.2.5 Aliasing 406
7.5.2.6 Doppler Sensitivity 407
7.5.3 Color Flow 407
7.5.3.1 Autocorrelation to Obtain Average Velocity 408
7.5.3.2 Time Domain Processing to Obtain Peak Velocity 408
7.5.3.3 Color Flow Scanning Parameters 409
7.5.4 Power Doppler 409
7.6 Contrast Media for Ultrasound 410
7.6.1 Impedance Mismatch Materials 410
7.6.1.1 Current Specifications of Contrast Materials 410
7.6.1.2 Harmonic Ultrasound 411
7.6.2 Current Uses of Contrast Materials 411
7.7 Ultrasound Quality Control Procedures 412
7.7.1 Depth of Penetration 413
7.7.2 Field Uniformity 414
7.7.3 Ring Down 414
7.7.4 Axial Resolution 414
7.7.5 Lateral Resolution 415
7.7.6 Vertical and Horizontal Caliper Accuracy 415
7.7.7 Slice Thickness Resolution and Range 416
7.7.8 Film Processing 417
7.7.9 Duplex Doppler Quality Control 417
7.7.10 Routine Quality Control 417
7.8 Conclusions 418
7.9 References 418
8 Magnetic Resonance: Principles and Spectroscopy 419
8.1 Introduction 421
8.2 Basic Principles 421
8.2.1 Macroscopic Magnetization 421
8.2.2 Laboratory and Rotating Frames 425
8.2.3 Relaxation Times 426
8.2.4 Magnetic Field Gradients 427
8.2.5 Chemical Shift 427
8.3 Magnet Technology 427
8.4 Implementation Considerations 428
8.4.1 Radio Frequency Coils 428
8.4.2 Radio Frequency Pulses 429
8.4.2.1 Rectangular Pulses 429
8.4.2.2 Adiabatic Pulses 430
Contents XV
8.4.2.3 Gaussian Pulses 430
8.4.2.4 SINC Slice Selective Pulses 431
8.4.2.5 Shinnar Le Roux Slice Selective Pulses 433
8.4.3 System Adjustments Before Acquiring Spectra 434
8.4.3.1 Coil Tuning 434
8.4.3.2 Adjust Frequency 434
8.4.3.3 Transmitter Gain 434
8.4.3.4 Receiver Gain 434
8.4.3.5 CYCLOPS and Phase Cycling 435
8.4.3.6 Shimming 436
8.4.3.7 Water Suppression 439
8.5 Spectroscopic Sequences 441
8.5.1 FID 442
8.5.2 ISIS 442
8.5.3 FID with Presaturation 445
8.5.4 STEAM 446
8.5.5 PRESS 449
8.5.6 CSI 450
8.6 Mathematics Used in Spectroscopy 453
8.6.1 Free Induction Decay in the Time Domain 453
8.6.2 Free Induction Decay in the Frequency Domain 455
8.7 Graphical Presentation of Spectroscopic Data 457
8.7.1 Time Domain 457
8.7.2 Frequency Domain 459
8.8 Spectroscopic Post processing 460
8.8.1 Eddy Current Correction 460
8.8.2 Convolution Filters 462
8.8.2.1 Apodization Filters 463
8.8.2.2 Convolution Difference Filters 465
8.8.3 Zero Filling 466
8.8.4 Fast Fourier Transform 468
8.8.5 Phasing 469
8.8.6 Baseline Correction 472
8.8.7 Peak Areas 472
8.8.8 Calculating Concentrations 472
8.9 Acknowledgements 473
8.10 List of Symbols 473
8.11 References 476
9 Magnetic Resonance Imaging: Principles,
Pulse Sequences, and Functional Imaging 479
9.1 Introduction 481
9.2 Basic Principles of Magnetic Resonance Imaging 481
9.2.1 Magnetic Resonance Phenomenon 481
9.2.1.1 Nuclei in a Magnetic Field 481
9.2.1.2 Radiofrequency Field 482
XVI Contents
9.2.1.3 Relaxation Phenomenon 483
9.2.2 Imaging Concepts 486
9.2.2.1 Slice Selection 487
9.2.2.2 Frequency Encoding 489
9.2.2.3 Phase Encoding 494
9.2.2.4 Image Formation Mathematics: K Space 495
9.2.2.5 Image Contrast 498
9.2.2.6 Sequence Timing 499
9.2.3 Pulse Sequence and Contrast Topics 500
9.2.3.1 Fast Gradient Echo Imaging 500
9.2.3.2 Gradient Echo Image Contrast 502
9.2.3.3 Gradient Echo Timing 502
9.2.3.4 Echo Planar Imaging Sequences 503
9.2.3.5 Other Factors Affecting the MR Image 503
9.3 Functional MRI 505
9.3.1 Brain Activation 506
9.3.2 Magnetic Susceptibility Contrast 507
9.3.2.1 Endogenous Susceptibility Contrast 511
9.3.2.2 Exogenous Susceptibility Contrast 511
9.3.2.3 Exchange Regimes 512
9.3.3 Hemodynamic Contrast 514
9.3.3.1 Blood Volume 514
9.3.3.2 Blood Perfusion 515
9.3.3.3 Blood Oxygenation 518
9.3.4 Issues in fMRI 520
9.3.4.1 Interpretability 520
9.3.4.2 Temporal Resolution 528
9.3.4.3 Spatial Resolution 531
9.3.4.4 Dynamic Range 532
9.3.4.5 Sensitivity 532
9.3.4.6 Some Unknowns 535
9.3.5 Common fMRI Platforms 536
9.3.5.1 Echo Planar Imaging 536
9.3.5.2 Conventional Multi shot Imaging 538
9.3.5.3 Spiral scanning 538
9.3.6 Applications 539
9.4 Acknowledgments 540
9.5 References 540
10 Imaging with Nonionizing Radiation 549
10.1 Introduction 550
10.2 Electric and Magnetic Surface Measurements 550
10.2.1 Origins of the Potential Difference and Magnetic Field 550
10.2.1.1 The External Electric Field 551
10.2.1.2 The External Magnetic Field 554
10.2.1.3 More Accurate Calculations 556
Contents XVII
10.2.1.4 More Accurate Models for the Cell 556
10.2.1.5 Tissue Inhomogeneities and the Body Surface 557
10.2.1.6 Bundles of Cells: the Bidomain Model 558
10.2.2 Measurements and Clinical Use 558
10.2.2.1 Cardiac: Electrocardiogram and Magnetocardiogram 558
10.2.2.2 Brain: Electroencephalogram and Magnetoencephalogram . 559
10.2.2.3 Magnetic Source Imaging 561
10.2.2.4 Stomach and Gut 562
10.2.3 Magnetic Susceptibility Measurements 562
10.2.4 Electrical Impedance Tomography 562
10.3 Optical Measurements 563
10.3.1 Theory 563
10.3.1.1 Continuous Measurements 566
10.3.1.2 Pulsed Measurements 566
10.3.1.3 Refinements to the Transport Model 567
10.3.2 Clinical Uses 567
10.4 References 569
11 Image Quality 573
11.1 Introduction: Defining Image Quality 575
11.1.1 General Principles 575
11.1.2 Definition of Imaging Tasks 576
11.1.3 Physical Characteristics of Imaging Systems 576
11.1.4 Stages of the Imaging Process 576
11.2 Physical Characteristics of Imaging Systems 577
11.2.1 Large Area Transfer Function 577
11.2.2 Spatial Resolution 577
11.2.2.1 Spatial Domain Functions 577
11.2.2.2 Fourier Domain Functions 578
11.2.2.3 Examples 579
11.2.3 Stochastic Properties 582
11.2.3.1 Pixel variance 584
11.2.3.2 Autocorrelation Function 584
11.2.3.3 Noise Power Spectrum 584
11.2.3.4 Examples 586
11.2.4 Noise Equivalent Quanta (NEQ) 591
11.2.5 Artifacts 592
11.3 Task Dependent Measures of Image Quality:
Detection and Discrimination 592
11.3.1 Ideal Observer Models 592
11.3.1.1 Signal Detection Theory 593
11.3.1.2 Spatial Frequency Dependence of Imaging Tasks 596
11.3.1.3 Examples 596
11.3.2 Quasi Ideal Observer Models 601
11.3.2.1 Nonprewhitening and Channelized Models 601
11.3.2.2 Fisher/Hotelling Observer 602
XVIII Contents
11.3.3 The Human Observer 603
11.3.3.1 General Principles 604
11.3.3.2 Rating Method Experiments and ROC Analysis 605
11.3.3.3 Forced Choice Experiments and Analysis 606
11.3.3.4 Comparing Model and Human Observers 606
11.4 Task Dependent Measures of Image Quality: Estimation ... 607
11.4.1 Estimation Tasks 607
11.4.1.1 Estimation of Image 607
11.4.1.2 Model based Estimation Tasks 607
11.4.2 Relationship Between Estimation and Detection 609
11.4.3 Examples 610
11.5 References 613
12 A Glimpse Into the Future: Diagnostic Applications 615
12.1 Introduction 616
12.2 Frontiers in Medical Imaging 616
12.3 Challenges to Medical Imaging 618
12.4 Control of Medical Technology Diffusion 619
12.5 Accountability in Health Care 620
12.6 Healthcare Changes and Strategies 622
12.7 References 623
Volume B Therapeutic Applications
List of Contributors XXXI
1 Production and Interaction of High Energy
X rays and Electrons 625
Part A Production of High Energy X rays and Electrons
1.1 Introduction Part A 628
1.2 Direct Voltage Accelerators 629
1.2.1 Transformer Rectifier Units 629
1.2.2 Resonant Transformer Units 630
1.2.3 Van De Graaff Generator 631
1.3 Alternating Gradient (Magnetic Induced) Accelerators .... 633
1.3.1 Betatron 633
1.4 Synchronous Accelerators 636
1.4.1 Electron Synchrotron 637
1.5 Resonance (Microwave) Accelerators 637
1.5.1 Linear Accelerators (Linacs) 638
1.5.1.1 Waveguide Structure 639
1.5.1.2 Traveling Wave Accelerators 641
Contents XIX
1.5.1.3 Standing Wave Accelerators 644
1.5.1.4 Traveling Wave Versus Standing Wave Accelerators 646
1.5.1.5 Electron Gun Injection 646
1.5.1.6 Magnetrons Microwave Power Source 648
1.5.1.7 Klystrons Microwave Power Amplifier 649
1.5.1.8 Circulators 651
1.5.1.9 Automatic Frequency Control AFC 653
1.5.1.10 Pulse Forming Network PFN 654
1.5.1.11 Vacuum Systems 657
1.5.1.12 Water Cooling System 657
1.5.1.13 Beam Magnet Systems 658
1.5.1.14 Treatment Head Assembly 662
1.5.1.15 Beam Monitoring Systems 667
1.5.1.16 Dual X ray Energy Accelerators 669
1.5.2 Microtron Accelerators 673
1.5.2.1 Circular Microtrons 674
1.5.2.2 Racetrack Microtrons 676
1.5.2.3 Photon Scanning Systems 677
1.5.2.4 Electron Scanning Systems 678
Part B Interactions of High Energy X rays and Electrons
1.6 Introduction Part B 680
1.7 X ray Interactions with Matter 682
1.7.1 Compton Scattering 683
1.7.1.1 Conservation Laws 683
1.7.1.2 Klein Nishina Differential Cross sections 688
1.7.1.3 Klein Nishina Cross sections 692
1.7.1.4 Compton Attenuation Coefficients 695
1.7.1.5 Angular Distribution of Scattered Photons 697
1.7.1.6 Angular Distribution of Compton Electrons 697
1.7.1.7 Energy Distribution of Compton Electrons and Photons .... 699
1.7.2 Photoelectric Effect 700
1.7.2.1 General Features of Photoelectric Effect 700
1.7.2.2 Directional Distribution of Photoelectrons 701
1.7.2.3 Average Forward Momentum 702
1.7.2.4 Interaction Cross section for the Photoelectric Effect 703
1.7.2.5 Attenuation Coefficients for Photoelectric Effect 704
1.7.2.6 Energy Transfer and Energy Absorption 705
1.7.3 Pair Production 707
1.7.3.1 Basis of Pair Production 707
1.7.3.2 Angular Distribution of Pair Electrons 709
1.7.3.3 Energy Distribution of Pair Electrons 709
1.7.3.4 Screening Corrections 710
1.7.3.5 Total Pair Production Cross section 711
1.7.3.6 Pair Production Attenuation Coefficients 712
1.7.3.7 Pair Production in an Electron Field Triple Production ... 714
1.7.4 Photonuclear Reactions 717
XX Contents
1.7.5 Attenuation and Absorption of High Energy Photon Beam . 719
1.7.5.1 Total Linear Attenuation Coefficient 720
1.7.5.2 Total Mass Attenuation Coefficients 721
1.7.5.3 Multiple Photon Processes 723
1.7.5.4 A Case History Monte Carlo Calculations 726
1.8 Electron Interactions with Matter 728
1.8.1 Inelastic Interaction with Atomic Electrons 729
1.8.1.1 Classical Cross section for Two Electrons 730
1.8.1.2 Quantum Mechanical Cross section for Two Electrons 731
1.8.1.3 Total Energy Loss by Electrons Collisional Losses 732
1.8.2 Inelastic Interactions with Atomic Nuclei 733
1.8.2.1 Classical Theory of Bremsstrahlung 733
1.8.2.2 Quantum Mechanical Theory of Bremsstrahlung 733
1.8.2.3 Quantum Mechanical Cross section of Bremsstrahlung 734
1.8.2.4 Differential Radiative Cross section 734
1.8.2.5 Total Energy Loss by Bremsstrahlung Radiative Losses . . . 735
1.8.3 Ratio of Radiative and Ionization Losses 737
1.9 References 737
2 Dosimetry of High Energy X Rays and Electrons 741
2.1 Introduction 742
2.2 Special Aspects of Interaction Physics 742
2.2.1 Coupling of Directly Ionizing Radiation Energy to Matter .. 742
2.2.1.1 Elastic, Inelastic, and Radiative Processes 742
2.2.1.2 Integral Form of Charged Particle Energy Loss 746
2.2.1.3 Evaluated Data 752
2.2.2 Coupling of Indirectly Ionizing Radiation Energy to Matter . 753
2.2.2.1 Interaction Coefficients and Cross Sections 754
2.2.2.2 Partial Interaction Coefficients 755
2.2.2.3 Kerma Coefficients 756
2.2.2.4 Evaluated Interaction Coefficients 757
2.2.3 Production of Ionization W Values 759
2.3 Dosimetric Concepts, Applications, and Techniques 762
2.3.1 Dosimetric Concepts 762
2.3.2 Cavity Dosimetry 765
2.3.3 Calorimetry 767
2.3.4 Chemical, Luminescent, and Diode Dosimeters 769
23 A.I Luminescent Dosimeters 769
2.3.4.2 Diodes 770
2.3.4.3 Chemical Dosimeters 771
2.4 Protocols and Their Implementation 772
2.4.1 Photon Protocols 773
2.4.2 Electron Protocols 778
2.4.3 Metrology 779
2.5 Appendix: Critical Interaction Coefficients 781
2.6 References 794
Contents XXI
3 Radiation Dose Distribution and Treatment Planning
with Photon and Electron Beams 797
3.1 Introduction 799
3.2 Photon Beam Dosimetry 799
3.3 Percentage Depth Dose 799
3.3.1 Percentage Depth Dose and Beam Energy 800
3.3.2 Percentage Depth Dose and Field Size 801
3.3.3 Percentage Depth Dose and SSD 802
3.4 Tissue Air Ratio 803
3.5 Backscatter Factor (BSF) 805
3.6 Scatter Air Ratio 805
3.7 Tissue Maximum Ratio 805
3.8 Dose Calculation Techniques 807
3.8.1 Field Size Dependence Factor in Phantom 808
3.8.2 SSD Treatment 808
3.8.3 Isocentric Treatment 810
3.8.4 Rotation Therapy 811
3.8.5 Regular and Irregular Fields 813
3.8.6 Clarkson Method for Irregular Fields 814
3.8.7 In air Relative Field Factor (RFFair) 815
3.8.8 In air Off axis Factor (OAFair) 815
3.8.9 Mantle Field Calculation 816
3.8.10 Total Body Irradiation 817
3.8.11 Asymmetric X ray Beams 819
3.9 Isodose Distributions 820
3.9.1 Single Field Isodose Distribution 820
3.9.2 Single Field Wedge Isodose Distribution 823
3.10 Treatment Planning Considerations 824
3.10.1 Patient Data Acquisition 825
3.10.2 Treatment with a Single Beam 825
3.11 Correction for Oblique Incidence and Surface Irregularity . . 827
3.11.1 Ratio of TAR Method 827
3.11.2 Isodose Shift Method 828
3.12 Correction for Tissue Inhomogeneity 830
3.12.1 Tissue Air Ratio Method 831
3.12.2 Power Law Tissue air Ratio Method 831
3.12.3 Radiation Beam Energy and Typical Correction Factors .... 832
3.13 Isodose Distributions for Multiple Beams 833
3.13.1 Two Parallel Opposed Beams 833
3.13.2 Patient Thickness and Dose Uniformity
for Parallel Opposed Beam 834
3.13.3 Multiple Beam Isodose Distributions 836
3.13.4 Wedge Beam Technique 837
3.14 Advances in Treatment Planning 839
3.14.1 Imaging Methods and Application in Treatment Planning .. 840
3.14.2 Application of CT in Radiation Therapy Planning 840
XXII Contents
3.15 Dose Calculation Algorithms 844
3.15.1 Three dimensional Methods 845
3.15.2 Delta Volume Method 845
3.15.3 Convolution Method 846
3.15.4 Monte Carlo Method 847
3.16 Electron Beam Therapy 847
3.17 Electron Beam Energy 848
3.18 Electron Beam Characteristics and Treatment Planning .... 849
3.18.1 Central Axis Depth Dose 849
3.18.2 Beam Uniformity and Isodose Distribution 850
3.18.3 Effects of Oblique Incidence 851
3.18.4 Effects of Tissue Inhomogeneity 852
3.18.5 Dose Calculation Algorithms 854
3.19 References 854
4 Three Dimensional Treatment Planning 857
4.1 Introduction 859
4.2 Imaging for 3D RT Planning 859
4.2.1 Computed Tomography 860
4.2.1.1 CT Scan Acquisition 861
4.2.1.2 CT Simulation 861
4.2.2 MRI 862
4.2.2.1 MRI in Treatment Planning 862
4.2.2.2 Functional Imaging in Treatment Planning 863
4.2.3 Emission Tomography 864
4.2.3.1 PET 864
4.2.3.2 SPECT 865
4.2.4 Image Registration 865
4.2.5 Volume Rendering 867
4.3 Designing Apertures 868
4.3.1 Object Definition 868
4.3.2 Target Contours 870
4.3.2.1 Gross Tumor Volume 870
4.3.2.2 Clinical Target Volume 871
4.3.2.3 Planning Target Volume 871
4.3.2.4 Inter Physician Variations 872
4.3.3 Beam s Eye View 872
4.3.3.1 BEV Displays 872
4.3.3.2 BEV Volumetrics 873
4.3.4 Aperture Margins 874
4.3.5 Organ Movement 874
4.4 Treatment Planning 876
4.4.1 Interactive Planning 876
4.4.2 Intensity Modulated Radiotherapy 877
4.4.3 3D Dose Algorithms 879
4.4.4 Treatment Plan Evaluation 880
Contents XXIII
4.4.5 Post Rx Dose Analysis 882
4.5 Stereotactic Radiosurgery 883
4.5.1 Background 883
4.5.2 Localization and Imaging 883
4.5.3 SRS/SRT Treatment Planning 884
4.5.4 Case Presentation 886
4.6 Acknowledgements 887
4.7 References 888
5 Brachytherapy Radionuclides, Dosimetry, and
Dose Distributions 891
5.1 Introduction and History 893
5.2 Radioisotopes for Brachytherapy 895
5.2.1 Desired Characteristics of Ideal Sources 895
5.2.2 Quality Assurance for Low Dose Rate Brachytherapy
Sources 899
5.2.2.1 Acceptance Testing 899
5.2.2.2 Periodic Testing 902
5.3 Source Strength Specification 903
5.3.1 Units of Specification 904
5.3.1.1 Mass 904
5.3.1.2 Activity 905
5.3.1.3 Exposure Related Quantities 905
5.3.1.4 Mass Equivalence 907
5.3.1.5 Apparent Activity 907
5.3.1.6 Air Kerma Strength 908
5.4 Calibration Methods 909
5.4.1 NISTand ADCL Calibrations 909
5.4.2 Clinical Assays of Source Strength 911
5.5 Absorbed Dose Calculation 913
5.5.1 Dose Specification 913
5.5.2 TG 43 Formalism 915
5.5.3 Former, Conventional Dose Calculation Formalism 919
5.5.4 Quimby Tables 919
5.5.5 Dose over Treatment Duration 921
5.6 Localization 923
5.6.1 Triangulation 923
5.6.1.1 Orthogonal Pairs 923
5.6.1.2 Stereo Shift 925
5.6.1.3 Variable angle Technique 927
5.6.1.4 Fiducial assisted General Triangulation 927
5.6.1.5 Accuracy and Source Identification Problems 930
5.6.2 Serial Slice Imaging 933
5.6.2.1 Computer assisted Tomography 933
5.6.2.2 Magnetic Resonance Imaging 934
5.6.2.3 Ultrasound 935
XXIV Contents
5.6.2.4 Serial slice Guidance for Implants 935
5.6.4 Dose Calculation Parameters 938
5.7 Typical Procedures 941
5.7.1 Planning 941
5.7.1.1 Patient Parameters 941
5.7.1.2 Dosimetric Parameters 941
5.7.2 Execution 941
5.7.3 Localization and Reconstruction 942
5.7.4 Post Execution Dose Calculation 942
5.7.5 Source Loading 942
5.7.6 Out Time Calculation 942
5.7.7 Removal 943
5.7.8 Return of Sources 943
5.8 Systems 943
5.9 Intracavitary Applications 944
5.9.1 Intraluminal Insertions 944
5.9.2 Vaginal Cylinders 949
5.9.3 Cervical Cancer 957
5.9.3.1 The Manchester System 958
5.9.3.2 M.D. Anderson System 962
5.9.3.3 ICRU Dose Specification 964
5.9.4 Corpus Cancer 965
5.10 Interstitial Implants 969
5.10.1 Manchester System 969
5.10.1.1 Planar Implants 970
5.10.1.2 Volume Implants 983
5.10.2 The Quimby System 987
5.10.3 The Paris System 990
5.10.4 Kwan/ Zwicker Systems for Planar Implants 994
5.10.5 Memorial System 999
5.10.6 Implants Without a System 1001
5.10.7 ICRU Recommendations for Interstitial Implant Reporting . . 1005
5.10.8 QA of Plans 1005
5.11 References 1007
6 Brachytherapy Treatment Devices and Treatment Planning .. 1009
6.1 Brachytherapy Planning 1011
6.1.1 Historical Background 1011
6.1.2 Evolution of Planning Techniques 1012
6.1.3 Calculation Procedures/Source Modeling 1013
6.2 Afterloading 1013
6.2.1 Historical Implant Methods 1013
6.2.2 Development of Afterloading Techniques 1014
6.2.3 Early Remote Afterloaders and Afterloading Techniques . .. 1017
6.2.4 Modern remote afterloaders 1018
6.2.5 Low Dose Rate (LDR) Remote Afterloading 1022
Contents XXV
6.2.5.1 Device Construction 1022
6.2.5.2 Source Design 1022
6.2.5.3 Representation of Dose Distributions 1022
6.2.5 A Advantages and Disadvantages of Design 1023
6.2.6 High Dose Rate (HDR) Remote Afterloading 1023
6.2.6.1 Device Construction 1024
6.2.6.2 Source Design 1024
6.2.6.3 Representative Dose Distributions 1025
6.2.6.4 Advantages and Disadvantages of Design 1026
6.2.6.5 Safety Procedures 1029
6.2.7 Pulsed Brachytherapy (PDR) Remote Afterloading 1030
6.2.7.1 Protection of Staff 1031
6.2.7.2 Facilities Required 1032
6.2.7.3. Biological Effects 1032
6.2.7.4 Safety Procedures 1032
6.2.7.5 Possible PDR Malfunctions 1033
6.3 Quality Assurance of Remote Afterloaders 1034
6.3.1 Source Change QA 1034
6.3.2 Monthly Quality Assurance Procedures 1034
6.3.3 Daily Quality Assurance 1035
6.4 Stereotactic Brachytherapy 1035
6.4.1 Stereotaxis 1035
6.4.2 Stereotactic Frames and Coordinate Systems 1036
6.4.3 Source Placement Techniques 1039
6.4.4 Calculation and Optimization Techniques 1039
6.5 Ophthalmologic Brachytherapy 1040
6.5.1 Ophthalmologic Applicators 1040
6.5.2 Ophthalmologic Plaques 1040
6.5.2.1 Calculation Techniques 1042
6.6 Radiation for Prevention of Restenosis 1043
6.6.1 Prevention of Restenosis by Irradiation 1044
6.6.2 Delivery of Radiation 1045
6.6.3 Dosimetry 1045
6.6.4 Estimation of Dose from Gamma Emitters 1046
6.6.5 Estimation of Dose from Beta Sources 1048
6.6.6 Practical Aspects of Dose Delivery 1050
6.7 References 1050
7 Hadron Therapy 1055
7.1 Hadron Radiation 1057
7.2 Physical and Biological Characteristics of Heavy
Charged Particle Beams 1059
7.2.1 Bragg Peak and Distal Dose Falloff 1059
7.2.2 Multiple Scattering and Lateral Dose Falloff (Penumbra) .. . 1062
7.2.3 Radiation Biology of Proton Beams 1063
7.3 Proton Radiation Therapy 1063
XXVI Contents
7.3.1 Comparison of Photon and Proton Therapy Plans 1064
7.3.2 On Going Proton Radiation Therapy Trials 1066
7.3.3 Planned Proton Beam Therapy at Existing Accelerators .... 1068
7.3.3.1 Clinical Requirements of Hospital Based Proton
Accelerator Facilities 1068
7.3.3.2 Particle Beam Ranges, and Range Adjustment 1070
7.3.3.3 Target Thickness and Range Modulation 1071
7.3.3.4 Lateral Broadening of Beams, Penumbra, and Dose
Uniformity 1072
7.3.3.5 Beam Size, Divergence, and Emittance 1075
7.3.3.6 Beam Optics 1075
7.3.3.7 Control Systems for Medical Beams 1076
7.3.4 Hospital Based Proton Accelerator Facilities 1076
7.3.4.1 First Medical Proton Facility in Loma Linda, California .... 1076
7.3.4.2 Medical Proton Facility in Kashiwa, Japan 1077
7.3.4.3 Northeast Proton Therapy Center (NPTC) in Boston 1078
7.3.4.4 Other Planned Hospital Based Proton Facilities 1079
7.4 Light and Heavy Ions For Radiation Therapy 1080
7.4.1 Physics Considerations For Light and Heavy Ions 1080
7.4.2 Biological Considerations for Light and Heavy Ions 1082
7.4.3 Light and Heavy Ion Accelerator Facilities
and Clinical Trials 1084
7.4.3.1 Bevalac at LBNL in Berkeley, California 1084
7.4.3.2 HIMAC at NIRS in Chiba, Japan 1085
7.4.3.3 Clinical Beam at GSI in Darmstadt, Germany 1086
7.4.3.4 Planned Light and Heavy Ion Facilities for Radiation Therapy 1086
7.4.4 Clinical Results of Heavy Charged Particle Beam Therapy . 1087
7.4.5 Future Development for Heavy Charged Particle Radiation
Therapy 1088
7.4.5.1 Three Dimensional Conformal Therapy Delivery 1088
7.5 Fast Neutron Therapy 1092
7.5.1 Rationale for Fast Neutron Therapy 1093
7.5.1.1 Interactions of Fast Neutrons with Tissue 1093
7.5.1.2 Biological Rationale 1095
7.5.2 Clinical Trials Using Fast Neutrons 1096
7.5.3 Clinical Results of Fast Neutron Trials 1099
7.5.4 Future Development in Fast Neutron Therapy 1100
7.6 Neutron Capture Therapy (NCT) 1100
7.6.1 Early BNCT Clinical Trials 1101
7.6.2 Renewed Interest in BNCT 1103
7.6.3 Rationale for BNCT 1104
7.6.4 Clinical Requirements 1104
7.6.4.1 Basic Requirements 1105
7.6.4.2 Background Dose Calculation 1106
7.6.4.3 BNCT Dose Calculation 1108
7.6.5 Progress in Borated Compounds 1109
Contents XXVII
7.6.5.1 Boron Compounds Used in BNCT Clinical Trials 1109
7.6.5.2 Development of New Boron Compounds for BNCT 1110
7.6.5.3 Possible NCT Isotopes Other Than 10B 1111
7.6.6 Nuclear Reactor Sources of Epithermal Neutrons for BNCT . 1112
7.6.6.1 Reactor Based Epithermal Neutron Sources 1112
7.6.6.2 Reactors for BNCT 1113
7.6.7 Alternative Neutron Sources for BNCT 1115
7.6.7.1 Accelerator Based BNCT 1115
7.6.7.2 Comparison Between Epithermal Neutron Beams from
Reactors and Accelerators 1117
7.6.7.3 Accelerator Options for BNCT 1118
7.6.7.4 Other Types of Accelerators for BNCT 1120
7.6.8 Other Applications of BNCT 1120
7.6.8.1 BNCT Enhanced Fast Neutron Therapy 1120
7.6.8.2 Boron Neutron Capture Synovectomy 1120
7.6.9 Future Development of BNCT 1120
7.7 Other Hadron Beams for Radiation Therapy 1121
7.7.1 Negative Pions for Radiation Treatment 1121
7.7.1.1. Physical Characteristics of ir 1123
7.7.1.2 Negative Pion Biology 1124
7.7.1.3 Negative Pion Clinical Trials 1125
7.7.2 Antiproton Beams for Cancer Therapy 1125
7.8 Future of Hardron Therapy 1126
7.9 Acknowledgments 1126
7.10 References 1127
8 Therapeutic Applications of Nonionizing Radiation 1033
8.1 Introduction 1135
8.2 Electrodynamics 1136
8.2.1 Maxwell s Equation 1136
8.2.1.1 Boundary Conditions 1138
8.2.1.2 Conservation Laws 1138
8.2.1.3 Wave Solutions 1139
8.2.2 Material Polarization 1140
8.2.2.1 Electronic Polarization 1140
8.2.2.2 Orientational Polarization 1142
8.2.2.3 Orientational Frequency Dependence 1143
8.2.2.4 Dielectric and Conductive Properties of Tissue 1143
8.2.3 Electromagnetic Field Solution 1145
8.2.3.1 Finite Differences 1145
8.2.3.2 Finite Difference Time Domain 1146
8.2.3.3 Finite Elements 1148
8.2.3.4 Anatomic Grids 1149
8.2.3.5 Boundary Conditions Applications 1150
8.3 Ultrasonics 1152
8.3.1 Wave Equations 1152
XXVIII Contents
8.3.1.1 Energy Transfer 1154
8.3.1.2 Acoustic Impedance 1154
8.3.2 Material Properties 1155
8.3.3 Acoustic Field Solutions 1155
8.4 Thermal Therapies 1157
8.4.1 Thermal Responses 1157
8.4.2 Thermal Cytotoxicity 1158
8.4.3 Bioheat Transfer 1158
8.4.4 Hyperthermic Oncology 1160
8.4.5 Thermal Ablation 1161
8.4.6 Thermal Therapy for Benign Disease 1162
8.5 Heating Technology 1163
8.5.1 Electromagnetic Heating 1164
8.5.2 Ultrasound Heating 1168
8.5.3 Interstitial Hyperthermia 1169
8.5.3.1 Conductive Sources 1170
8.5.3.2 Local Current Sources 1171
8.5.3.3 Microwave Sources 1172
8.5.3.4 Ultrasonic Sources 1175
8.5.4 Intracavitary/Intraluminal Hyperthermia 1176
8.5.4.1 Intracavitary/Intraluminal RF Applicators 1177
8.5.4.2 Intracavitary/Intraluminal US Applicators 1178
8.5.4.3 Intracavitary/Intraluminal MW Applicators 1178
8.5.5 Noninvasive Heating 1179
8.5.5.1 SuperficialMW 1179
8.5.5.2 Superficial US 1181
8.5.6 Noninvasive Deep Heating EM 1186
8.5.6.1 RF Capacitive Heating 1186
8.5.6.2 RF Inductive Heating 1187
8.5.6.3 RF Phased Array Heating 1189
8.5.7 Noninvasive US Heating Deep 1191
8.5.7.1 FocusedUS 1191
8.5.7.2 US Ablation 1192
8.6 Treatment Planning 1194
8.6.1 Empirical Treatment Planning 1194
8.6.2 Numerical Treatment Planning 1196
8.6.3 Treatment Planning Verification 1200
8.7 Thermometry 1200
8.7.1 Invasive Thermometry 1200
8.7.1.1 Thermocouple Thermometry 1203
8.7.1.2 Thermistor Thermometry 1204
8.7.1.3 Gallium Arsenide Optical Thermometry 1204
8.7.1.4 Photoluminescent Thermometry 1205
8.7.2 Thermometry in Clinical Applications 1206
8.7.2.1 Calibration 1206
8.7.3 Measurement Errors and Artifacts . . . 1208
Contents XXIX
8.7.3.1 Thermal Smearing 1208
8.7.3.2 EM Artifacts 1208
8.7.3.3 US Artifacts 1209
8.7.4 Noninvasive Thermometry 1210
8.7.4.1 Microwave Radiometry 1211
8.7.4.2 Magnetic Resonance Thermometry 1212
8.7.4.3 MR Diffusion Thermometry 1212
8.7.4.4 Chemical Shift Thermometry 1215
8.8 Summary 1217
8.9 References 1218
9 Modelling the Effectiveness of Radiation Treatment 1225
9.1 Introduction to Statistical Modelling 1227
9.2 Statistical Modelling 1232
9.2.1 Parametric Regression Models and Methods 1232
9.2.1.1 Normal Theory Models 1233
9.2.1.2 Regression Diagnostics I 1235
9.2.1.3 Regression Diagnostics II 1240
9.2.2 Non Parametric Regression 1241
9.2.3 Regression Therapeutics 1242
9.2.3.1 Ridge Regression 1242
9.2.3.2 Data Augmentation 1243
9.2.3.3 Bayesian Regression 1244
9.2.3.4 Mixed Estimation 1245
9.2.3.5 Sensitivity Analysis 1248
9.2.4 Model Mis Specification 1248
9.2.4.1 Over fitting 1249
9.2.4.2 Under fitting 1249
9.2.5 The Bias and Variance of Sample Estimates
of the Ratio of Regression Parameters, 9 = fii/fc 1250
9.2.5.1 Indirect Estimates of 9 = fclfc 1250
9.2.5.2 Direct Estimates of 9 = p/fa 1251
9.3 Rival Models of Radiation Response 1252
9.3.1 The 4Rs of Radiation Oncology 1252
9.3.2 Rival Models of Binomial Response 1252
9.3.3 Rival Models of Poisson Response 1255
9.4 An Isoeffect Model of Current Clinical Practice 1257
9.5 Empirical vs Mechanistic Models 1259
9.5.1 Insights from Nonlinear Dynamics 1260
9.5.2 Effect of Fractionation on Radiation Response 1262
9.5.3 Effect of Protraction on Radiation Response 1265
9.6 The LQR Model 1266
9.7 Rival Models and Methods of Model Construction and
Assessment I: Binomial Response 1267
9.8 Rival Models and Methods of Model Construction and
Assessment II: Poisson Response 1280
XXX Contents
9.9 Conclusions 1282
9.10 References 1285
10 Radiation Protection and Shielding:
High Energy Photons and Neutrons 1289
10.1 Introduction 1291
10.1.1 Radiotherapy Facility Planning 1291
10.1.2 General Considerations 1292
10.1.3 General Design Principles 1293
10.2 Sources of Radiation 1294
10.2.1 Superficial and Orthovoltage Radiation 1294
10.2.2 Radioactive Sources 1295
10.2.3 Megavoltage Radiation from Medical Linear Accelerators .. 1295
10.3 Radiation Protection and Shielding Considerations
for Specialized Techniques 1296
10.3.1 Total Body Irradiation 1297
10.3.2 Total Skin Electron Therapy 1297
10.3.3 Intraoperative Radiation Therapy 1298
10.3.4 High Dose Rate Brachytherapy 1298
10.4 Radiation Protection 1299
10.4.1 Special Considerations for High Energy Radiation 1299
10.4.2 Regulatory Mandates 1300
10.4.2.1 Radionuclide Sources 1300
10.4.2.2 Sources of Machine Produced Radiation 1301
10.4.2.3 Permissible Exposure Limits 1301
10.4.3 Monitoring Systems and Interlocks 1302
10.4.4 Monitoring of Area and Personnel 1303
10.4.5 Radiation Protection Program 1303
10.5 Interactions of High Energy Radiations 1304
10.5.1 Introduction 1304
10.5.2 Spectral Characteristics 1304
10.5.3 Secondary Radiation Interactions 1305
10.5.3.1 Scattered Radiation 1305
10.5.3.2 Photoneutrons 1305
10.5.3.3 Capture Gamma Fields 1306
10.6 High Energy Photon Shielding 1306
10.6.1 Introduction 1306
10.6.2 Calculation Techniques 1307
10.6.2.1 Radionuclide Sources 1307
10.6.2.2 High Dose Rate Remote Afterloaders (HDR) 1308
10.6.2.3 Teletherapy Sources and Linear Accelerators 1309
10.6.3 Computer Simulations 1312
10.7 Photoneutron Shielding 1313
10.7.1 Photoneutron Productions 1314
10.7.2 Phtoneutron Transport in a Treatment Room 1315
Contents XXXI
10.7.3 Estimating Neutron Dose Equivalent Level
in a Treatment Room 1316
10.7.4 Shielding for Neutrons 1316
10.7.5 Maze Design for Neutrons 1317
10.7.6 Door Shielding for Neutrons 1318
10.8 Shielding Materials and Construction Techniques 1318
10.8.1 Concrete 1319
10.8.2 Steel 1320
10.8.3 Lead 1320
10.8.4 Specialty Materials 1321
10.9 Special Considerations in Shielding Design 1322
10.9.1 Room Dimensions and Machine Orientation 1322
10.9.2 Air Conditioning and Air Exchange Requirements 1322
10.9.3 Placement of Ducts and Conduits in the
Treatment Rooms 1323
10.9.4 Heavily Shielded Doors 1323
10.9.5 Skyshine Considerations 1323
10.10 Quality Assurance 1324
10.10.1 Evaluation of Materials 1324
10.10.2 Inspections During Construction 1324
10.10.3 Acceptance Testing 1325
10.10.4 Long Term Radiation Surveys 1326
10.11 References 1326
11 A Glimpse Into the Future:
Therapeutic Applications 1329
11.1 Introduction 1330
11.2 The Transformation of Health Care 1330
11.3 Integrated Patient Management 1332
11.4 References 1335
Index 1336
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV012287940 |
classification_rvk | YR 1600 |
ctrlnum | (OCoLC)313373535 (DE-599)BVBBV012287940 |
discipline | Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01410nam a2200361 cc4500</leader><controlfield tag="001">BV012287940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990412 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">981202s1999 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527296689</subfield><subfield code="9">3-527-29668-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)313373535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012287940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-578</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">YR 1600</subfield><subfield code="0">(DE-625)154086:12905</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 100</subfield><subfield code="2">nlm</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomedical uses of radiation</subfield><subfield code="n">A</subfield><subfield code="p">Diagnostic applications</subfield><subfield code="c">William R. Hendee (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 623 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radiologische Diagnostik</subfield><subfield code="0">(DE-588)4048214-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strahlentherapie</subfield><subfield code="0">(DE-588)4057833-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Radiologische Diagnostik</subfield><subfield code="0">(DE-588)4048214-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strahlentherapie</subfield><subfield code="0">(DE-588)4057833-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hendee, William R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV012287937</subfield><subfield code="g">A</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008331248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008331248</subfield></datafield></record></collection> |
id | DE-604.BV012287940 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:24:59Z |
institution | BVB |
isbn | 3527296689 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008331248 |
oclc_num | 313373535 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-578 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-578 |
physical | XXXV, 623 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Biomedical uses of radiation A Diagnostic applications William R. Hendee (ed.) Weinheim [u.a.] Wiley-VCH 1999 XXXV, 623 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Radiologische Diagnostik (DE-588)4048214-5 gnd rswk-swf Strahlentherapie (DE-588)4057833-1 gnd rswk-swf Radiologische Diagnostik (DE-588)4048214-5 s Strahlentherapie (DE-588)4057833-1 s DE-604 Hendee, William R. Sonstige oth (DE-604)BV012287937 A HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008331248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Biomedical uses of radiation Radiologische Diagnostik (DE-588)4048214-5 gnd Strahlentherapie (DE-588)4057833-1 gnd |
subject_GND | (DE-588)4048214-5 (DE-588)4057833-1 |
title | Biomedical uses of radiation |
title_auth | Biomedical uses of radiation |
title_exact_search | Biomedical uses of radiation |
title_full | Biomedical uses of radiation A Diagnostic applications William R. Hendee (ed.) |
title_fullStr | Biomedical uses of radiation A Diagnostic applications William R. Hendee (ed.) |
title_full_unstemmed | Biomedical uses of radiation A Diagnostic applications William R. Hendee (ed.) |
title_short | Biomedical uses of radiation |
title_sort | biomedical uses of radiation diagnostic applications |
topic | Radiologische Diagnostik (DE-588)4048214-5 gnd Strahlentherapie (DE-588)4057833-1 gnd |
topic_facet | Radiologische Diagnostik Strahlentherapie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008331248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012287937 |
work_keys_str_mv | AT hendeewilliamr biomedicalusesofradiationa |