Minimax and monotonicity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1998
|
Schriftenreihe: | Lecture notes in mathematics
1693 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 2. Aufl. u.d.T.: Simons, Stephen: From Hahn-Banach to monotonicity |
Beschreibung: | XI, 172 S. graph. Darst. |
ISBN: | 3540647554 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012068624 | ||
003 | DE-604 | ||
005 | 20080307 | ||
007 | t | ||
008 | 980714s1998 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 954030036 |2 DE-101 | |
020 | |a 3540647554 |9 3-540-64755-4 | ||
035 | |a (OCoLC)246276024 | ||
035 | |a (DE-599)BVBBV012068624 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-824 |a DE-739 |a DE-91G |a DE-29T |a DE-20 |a DE-355 |a DE-19 |a DE-706 |a DE-521 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA3 QA329.8.L28 no. 1693 | |
082 | 0 | |a 510 s 515/.7248 21 | |
082 | 0 | |a 510 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 49J35 |2 msc | ||
084 | |a 27 |2 sdnb | ||
084 | |a MAT 525f |2 stub | ||
084 | |a MAT 910f |2 stub | ||
084 | |a 47H05 |2 msc | ||
100 | 1 | |a Simons, Stephen |d 1938- |e Verfasser |0 (DE-588)120302225 |4 aut | |
245 | 1 | 0 | |a Minimax and monotonicity |c Stephen Simons |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1998 | |
300 | |a XI, 172 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1693 | |
500 | |a 2. Aufl. u.d.T.: Simons, Stephen: From Hahn-Banach to monotonicity | ||
650 | 4 | |a Monotone operators | |
650 | 4 | |a Monotonic functions | |
650 | 4 | |a Maxima and minima | |
650 | 4 | |a Duality theory (Mathematics) | |
650 | 0 | 7 | |a Multifunktion |0 (DE-588)4434824-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimax-Theorem |0 (DE-588)4135131-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monotone Funktion |0 (DE-588)4294665-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maximaler monotoner Operator |0 (DE-588)4401290-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Multifunktion |0 (DE-588)4434824-1 |D s |
689 | 0 | 1 | |a Monotone Funktion |0 (DE-588)4294665-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maximaler monotoner Operator |0 (DE-588)4401290-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Minimax-Theorem |0 (DE-588)4135131-9 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1693 |w (DE-604)BV000676446 |9 1693 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008169533&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008169533 |
Datensatz im Suchindex
_version_ | 1804126668317523968 |
---|---|
adam_text | Table of Contents
Introduction 1
Chapter I. Functional analytic preliminaries
1. The Hahn—Banach and Mazur—Orlicz theorems 13
2. Convex, concave and affine functions 15
3. The minimax theorem 16
4. The dual and bidual of a Banach space 18
5. The minimax criterion for weak compactness in a
Banach space 21
6. Four examples of the minimax technique — Fenchel
duality 23
7. The perfect square trick and the /g theorem 27
Chapter II. Multifunctions
8. Multifunctions, monotonicity and maximality 29
9. The big convexification 32
10. Criteria for maximal monotonicity in reflexive spaces ... 34
11. Monotone multifunctions with bounded range 40
Chapter III. A digression into convex analysis
12. Surrounding sets and the dom lemma 43
13. The dom dom lemma 45
14. The dom dom lemma and the Attouch Brezis condition 49
X Table of Contents
Chapter IV. General monotone multifunction^
15. Two convex functions determined by a multifunction ... 53
16. Maximal monotonicity and closed convex sets 57
17. A general local boundedness theorem 63
18. The six set theorem and the nine set theorem 64
19. The range of a sum 70
Chapter V. The sum problem for reflexive spaces
20. The maximal monotonicity of a sum 75
21. The dom—dom constraint qualification 81
22. The six set and the nine set theorems for pairs of
multifunctions 84
23. The equivalence of six constraint qualifications — twice . 86
24. The Brezis Crandall Pazy condition 89
Chapter VI. Special maximal monotone multifunctions
25. Subclasses of the maximal monotone multifunctions 97
26. The sum problem and the closure of the domain 101
27. The closure of the range 104
Chapter VII. Subdifferentials
28. The subdifferential of a sum Ill
29. Subdifferentials are maximal monotone 113
30. Subdifferentials are of type (FP) 118
31. Subdifferentials are of type (FPV) 120
32. Subdifferentials are strongly maximal monotone 123
33. The biconjugate of a pointwise maximum 129
34. Biconjugate topologies on the bidual 132
Table of Contents XI
35. Subdifferentials are maximal monotone of type (D),
and more 138
Chapter VIII. Discontinuous positive linear operators
36. A criterion for maximality 141
37. A sum theorem 143
38. Discontinuous positive linear operators and the six
subclasses 145
Chapter IX. The sum problem for general Banach spaces
39. Introduction 153
40. Multifunction with full domain 153
41. Sums with normality maps 156
42. Sums with linear maps 160
Chapter X. Open problems 163
References 165
Subject index 169
Symbol index 171
|
any_adam_object | 1 |
author | Simons, Stephen 1938- |
author_GND | (DE-588)120302225 |
author_facet | Simons, Stephen 1938- |
author_role | aut |
author_sort | Simons, Stephen 1938- |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV012068624 |
callnumber-first | Q - Science |
callnumber-label | QA3 QA329 |
callnumber-raw | QA3 QA329.8.L28 no. 1693 |
callnumber-search | QA3 QA329.8.L28 no. 1693 |
callnumber-sort | QA 13 _Q A329 18. L28 NO 41693 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 600 |
classification_tum | MAT 525f MAT 910f |
ctrlnum | (OCoLC)246276024 (DE-599)BVBBV012068624 |
dewey-full | 510S515/.724821 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 s 515/.7248 21 510 |
dewey-search | 510 s 515/.7248 21 510 |
dewey-sort | 3510 S 3515 47248 221 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02379nam a2200625 cb4500</leader><controlfield tag="001">BV012068624</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080307 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980714s1998 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">954030036</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540647554</subfield><subfield code="9">3-540-64755-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246276024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012068624</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3 QA329.8.L28 no. 1693</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510 s 515/.7248 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49J35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 525f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47H05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simons, Stephen</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120302225</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax and monotonicity</subfield><subfield code="c">Stephen Simons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 172 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1693</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Aufl. u.d.T.: Simons, Stephen: From Hahn-Banach to monotonicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monotone operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monotonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxima and minima</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multifunktion</subfield><subfield code="0">(DE-588)4434824-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monotone Funktion</subfield><subfield code="0">(DE-588)4294665-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maximaler monotoner Operator</subfield><subfield code="0">(DE-588)4401290-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multifunktion</subfield><subfield code="0">(DE-588)4434824-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Monotone Funktion</subfield><subfield code="0">(DE-588)4294665-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maximaler monotoner Operator</subfield><subfield code="0">(DE-588)4401290-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Minimax-Theorem</subfield><subfield code="0">(DE-588)4135131-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1693</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1693</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008169533&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008169533</subfield></datafield></record></collection> |
id | DE-604.BV012068624 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:21:07Z |
institution | BVB |
isbn | 3540647554 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008169533 |
oclc_num | 246276024 |
open_access_boolean | |
owner | DE-824 DE-739 DE-91G DE-BY-TUM DE-29T DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-521 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-824 DE-739 DE-91G DE-BY-TUM DE-29T DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-706 DE-521 DE-634 DE-83 DE-11 DE-188 |
physical | XI, 172 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Simons, Stephen 1938- Verfasser (DE-588)120302225 aut Minimax and monotonicity Stephen Simons Berlin [u.a.] Springer 1998 XI, 172 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1693 2. Aufl. u.d.T.: Simons, Stephen: From Hahn-Banach to monotonicity Monotone operators Monotonic functions Maxima and minima Duality theory (Mathematics) Multifunktion (DE-588)4434824-1 gnd rswk-swf Minimax-Theorem (DE-588)4135131-9 gnd rswk-swf Monotone Funktion (DE-588)4294665-7 gnd rswk-swf Maximaler monotoner Operator (DE-588)4401290-1 gnd rswk-swf Multifunktion (DE-588)4434824-1 s Monotone Funktion (DE-588)4294665-7 s DE-604 Maximaler monotoner Operator (DE-588)4401290-1 s Minimax-Theorem (DE-588)4135131-9 s Lecture notes in mathematics 1693 (DE-604)BV000676446 1693 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008169533&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Simons, Stephen 1938- Minimax and monotonicity Lecture notes in mathematics Monotone operators Monotonic functions Maxima and minima Duality theory (Mathematics) Multifunktion (DE-588)4434824-1 gnd Minimax-Theorem (DE-588)4135131-9 gnd Monotone Funktion (DE-588)4294665-7 gnd Maximaler monotoner Operator (DE-588)4401290-1 gnd |
subject_GND | (DE-588)4434824-1 (DE-588)4135131-9 (DE-588)4294665-7 (DE-588)4401290-1 |
title | Minimax and monotonicity |
title_auth | Minimax and monotonicity |
title_exact_search | Minimax and monotonicity |
title_full | Minimax and monotonicity Stephen Simons |
title_fullStr | Minimax and monotonicity Stephen Simons |
title_full_unstemmed | Minimax and monotonicity Stephen Simons |
title_short | Minimax and monotonicity |
title_sort | minimax and monotonicity |
topic | Monotone operators Monotonic functions Maxima and minima Duality theory (Mathematics) Multifunktion (DE-588)4434824-1 gnd Minimax-Theorem (DE-588)4135131-9 gnd Monotone Funktion (DE-588)4294665-7 gnd Maximaler monotoner Operator (DE-588)4401290-1 gnd |
topic_facet | Monotone operators Monotonic functions Maxima and minima Duality theory (Mathematics) Multifunktion Minimax-Theorem Monotone Funktion Maximaler monotoner Operator |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008169533&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT simonsstephen minimaxandmonotonicity |