Mechanics of viscoelastic solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
1998
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 472 S. graph. Darst. |
ISBN: | 0471975125 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012032833 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 980630s1998 d||| |||| 00||| eng d | ||
020 | |a 0471975125 |9 0-471-97512-5 | ||
035 | |a (OCoLC)37902441 | ||
035 | |a (DE-599)BVBBV012032833 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a TA418.2 | |
082 | 0 | |a 620.1/9204232 |2 21 | |
084 | |a UF 3000 |0 (DE-625)145570: |2 rvk | ||
100 | 1 | |a Drozdov, Aleksey D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mechanics of viscoelastic solids |c Aleksey D. Drozdov |
264 | 1 | |a Chichester [u.a.] |b Wiley |c 1998 | |
300 | |a XII, 472 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Polymers |x Viscosity |x Mathematical models | |
650 | 4 | |a Viscoelastic materials |x Mechanical properties | |
650 | 4 | |a Viscoelasticity |x Mathematical models | |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskoelastisches Medium |0 (DE-588)4426217-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 0 | 1 | |a Viskoelastisches Medium |0 (DE-588)4426217-6 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008142122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008142122 |
Datensatz im Suchindex
_version_ | 1804126627014115328 |
---|---|
adam_text | IMAGE 1
MECHANICS OF VISCOELASTIC
SOLIDS
ALEKSEY D. DROZDOV INSTITUTE FOR INDUSTRIAL MATHEMATICS, BEERSHEBA,
ISRAEL
JOHN WILEY & SONS CHICHESTER * NEW YORK * WEINHEIM * BRISBANE * TORONTO
* SINGAPORE
IMAGE 2
CONTENTS
PREFACE XI
1 CONSTITUTIVE MODELS IN LINEAR VISCOELASTICITY 1
1.1 THE BOLTZMANN SUPERPOSITION PRINCIPLE 2
1.2 THE SHORT-TERM RESPONSE IN PHYSICALLY AGED POLYMERS 8
1.2.1 A MODEL OF ADAPTIVE LINKS 9
1.2.2 A BALANCE EQUATION FOR THE NUMBER OF LINKS 10
1.2.3 COMPARISON WITH EXPERIMENTS 16
1.2.4 TIME-VARYING LOADING 18
1.3 THE LONG-TERM RESPONSE IN PHYSICALLY AGED POLYMERS 23
1.3.1 A MODEL OF ADAPTIVE LINKS 25
1.3.2 A FREE VOLUME CONCEPT 29
1.3.3 CONSTITUTIVE EQUATIONS 41
1.3.4 COMPARISON WITH EXPERIMENTS 47
1.4 CONSTITUTIVE RELATIONS FOR THREE-DIMENSIONAL LOADING 56
1.5 THERMODYNAMIC POTENTIALS OF A TRANSIENT NETWORK 63
1.5.1 STRAIN ENERGY DENSITY 63
1.5.2 THERMODYNAMIC POTENTIALS AND CONSTI TUTIVE EQUATIONS 69
1.5.3 PROPERTIES OF RELAXATION FUNCTIONS . .. 73 1.6 VARIATIONAL
PRINCIPLES IN VISCOELASTICITY . . .. 83 1.6.1 VARIATIONAL PRINCIPLES AND
GOVERNING EQUATIONS 83
1.6.2 GIBBS PRINCIPLE AND THE SECOND LAW OF THERMODYNAMICS 88
1.6.3 DEBONDING OF A STRIP LINKED TO A RIGID FOUNDATION BY A
VISCOELASTIC ADHESIVE LAYER 90
IMAGE 3
VIII CONTENTS
1.7 PHASE TRANSITIONS IN VISCOELASTIC MEDIA 106 1.7.1 FORMULATION OF THE
PROBLEM 106
1.7.2 AN INTEGRAL OVER A VARYING DOMAIN . . .. 110 1.7.3 INTERFACIAL
EQUILIBRIUM EQUATIONS 114 1.7.4 LOCAL MELTING OF A VISCOELASTIC MEDIUM .
120
REFERENCES 125
2 CONSTITUTIVE MODELS IN NONLINEAR VISCOELASTICITY . . . . . .. 135
2.1 A TRANSIENT NETWORK WITH NONLINEAR LINKS . . 136 2.1.1 CONSTITUTIVE
EQUATIONS 140
2.1.2 COMPARISON WITH EXPERIMENTS 145
2.1.3 THREE-DIMENSIONAL LOADING 148
2.1.4 TORSION OF A CONICAL PIPE 149
2.1.5 THE CORRESPONDENCE PRINCIPLES 155
2.2 A NETWORK WITH AN EYRING-TYPE CLOCK 157
2.2.1 STRESS-STRAIN RELATIONS 159
2.2.2 THE GENERALIZED ARRHENIUS EQUATION . .. 161 2.2.3 COMPARISON WITH
EXPERIMENTS 163
2.3 A NETWORK WITH AN ENTROPY-DRIVEN CLOCK . .. 172 2.3.1 THERMODYNAMIC
POTENTIALS 174
2.3.2 A DISSIPATION-DRIVEN INTERNAL CLOCK . . .. 177 2.3.3 COMPARISON
WITH EXPERIMENTS 180
2.4 CONSTITUTIVE RELATIONS IN VISCOELASTOPLASTICITY 189
2.4.1 A MODEL OF ADAPTIVE LINKS 189
2.4.2 COMPARISON WITH EXPERIMENTS 196
REFERENCES 203
3 CONSTITUTIVE MODELS IN FINITE VISCOELASTICITY 209
3.1 OPERATOR LINEAR CONSTITUTIVE RELATIONS . . . . 2 10 3.1.1 KINETIC
EQUATIONS 210
3.1.2 STRAIN ENERGY DENSITY 211
3.1.3 THERMODYNAMIC POTENTIALS 217
3.1.4 COMPARISON WITH EXPERIMENTS 221
3.1.5 THE PRINCIPLE OF MINIMUM FREE ENERGY . . 225 3.1.6 THERMODYNAMIC
STABILITY 233
3.2 THE MOONEY-RIVLIN MODEL 237
3.2.1 DIFFERENTIAL CONSTITUTIVE EQUATIONS . .. 237 3.2.2 UNIAXIAL
EXTENSION 239
3.2.3 SIMPLE SHEAR 245
3.2.4 TORSION OF A CIRCULAR CYLINDER 248
3.3 STRAIN ENERGY DENSITY OF A NETWORK 254
3.3.1 UNIAXIAL EXTENSION 256
IMAGE 4
CONTENTS IX
3.3.2 BIAXIAL EXTENSION 259
3.4 CONSTITUTIVE EQUATIONS BASED ON THE FREE VOLUME CONCEPT 271
3.4.1 THE TIME-STRAIN SUPERPOSITION PRINCIPLE 273 3.4.2 A NEO-HOOKEAN
VISCOELASTIC MEDIUM . . .. 275 3.4.3 UNIAXIAL EXTENSION 276
3.4.4 SIMPLE SHEAR 284
3.4.5 RADIAL DEFORMATION OF A SPHERICAL SHELL 289 3.5 A NETWORK WITH AN
ENTROPY-DRIVEN CLOCK . .. 299 3.5.1 A CONCEPT OF TRANSIENT NETWORKS 300
3.5.2 THERMODYNAMIC POTENTIALS 313
3.5.3 SIMPLE SHEAR 317
REFERENCES 323
4 C O N S T I T U T I VE MODELS IN THERMOVISCOELASTICITY 329
4.1 THERMORHEOLOGICALLY SIMPLE MEDIA 330
4.1.1 TIME-TEMPERATURE SUPERPOSITION PRINCI PLE . 331
4.1.2 THERMAL SHIFT FACTOR . 332
4.1.3 NONISOTHERMAL LOADING 337
4.2 THERMORHEOLOGICALLY COMPLEX MEDIA 340
4.2.1 BASIC HYPOTHESES 340
4.2.2 A CONCEPT OF TRANSIENT NETWORKS (MODEL I) 343
4.2.3 A CONCEPT OF TRANSIENT NETWORKS (MODEL I) 351
4.2.4 NONISOTHERMAL LOADING 358
4.3 THE NONISOTHERMAL RESPONSE IN NONAGING POLYMERS 364
4.3.1 THREE-DIMENSIONAL LOADING 371
4.3.2 THE STANDARD THERMOVISCOELASTIC SOLID . 372 4.3.3 COOLING OF A
RECTILINEAR BAR 378
4.3.4 COOLING OF A CYLINDRICAL SHELL 382
4.4 LINEAR MEDIA SUBJECTED TO PHYSICAL AGING . .. 400 4.4.1 CONSTITUTIVE
EQUATIONS 401
4.4.2 COOLING OF A SPHERICAL PRESSURE VESSEL . 404 4.5 NONLINEAR MEDIA
SUBJECTED TO PHYSICAL AGING 414 4.5.1 STRAIN ENERGY DENSITY OF A NETWORK
(ISOTHERMAL LOADING) 415
4.5.2 STRAIN ENERGY DENSITY OF A NETWORK (NONISOTHERMAL LOADING) 417
4.5.3 THERMODYNAMIC POTENTIALS 419
4.5.4 CONSTITUTIVE RELATIONS (FINITE STRAINS) . 421 4.5.5 CONSTITUTIVE
RELATIONS (SMALL STRAINS) . 425
IMAGE 5
X CONTENTS
4.5.6 CONSTITUTIVE RELATIONS FOR PHYSICALLY AGED POLYMERS 427
4.5.7 THE AGING SHIFT FACTOR 434
4.5.8 UNIAXIAL EXTENSION 439
4.5.9 COOLING OF A PLATE 446
REFERENCES 459
I N D EX 465
|
any_adam_object | 1 |
author | Drozdov, Aleksey D. |
author_facet | Drozdov, Aleksey D. |
author_role | aut |
author_sort | Drozdov, Aleksey D. |
author_variant | a d d ad add |
building | Verbundindex |
bvnumber | BV012032833 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.2 |
callnumber-search | TA418.2 |
callnumber-sort | TA 3418.2 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 3000 |
ctrlnum | (OCoLC)37902441 (DE-599)BVBBV012032833 |
dewey-full | 620.1/9204232 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/9204232 |
dewey-search | 620.1/9204232 |
dewey-sort | 3620.1 79204232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01674nam a2200433 c 4500</leader><controlfield tag="001">BV012032833</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980630s1998 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471975125</subfield><subfield code="9">0-471-97512-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37902441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012032833</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/9204232</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3000</subfield><subfield code="0">(DE-625)145570:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drozdov, Aleksey D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanics of viscoelastic solids</subfield><subfield code="c">Aleksey D. Drozdov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 472 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield><subfield code="x">Viscosity</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic materials</subfield><subfield code="x">Mechanical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskoelastisches Medium</subfield><subfield code="0">(DE-588)4426217-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Viskoelastisches Medium</subfield><subfield code="0">(DE-588)4426217-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008142122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008142122</subfield></datafield></record></collection> |
id | DE-604.BV012032833 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:20:27Z |
institution | BVB |
isbn | 0471975125 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008142122 |
oclc_num | 37902441 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XII, 472 S. graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Wiley |
record_format | marc |
spelling | Drozdov, Aleksey D. Verfasser aut Mechanics of viscoelastic solids Aleksey D. Drozdov Chichester [u.a.] Wiley 1998 XII, 472 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematisches Modell Polymers Viscosity Mathematical models Viscoelastic materials Mechanical properties Viscoelasticity Mathematical models Festkörper (DE-588)4016918-2 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Viskoelastisches Medium (DE-588)4426217-6 gnd rswk-swf Festkörper (DE-588)4016918-2 s Viskoelastisches Medium (DE-588)4426217-6 s Mathematisches Modell (DE-588)4114528-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008142122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Drozdov, Aleksey D. Mechanics of viscoelastic solids Mathematisches Modell Polymers Viscosity Mathematical models Viscoelastic materials Mechanical properties Viscoelasticity Mathematical models Festkörper (DE-588)4016918-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd Viskoelastisches Medium (DE-588)4426217-6 gnd |
subject_GND | (DE-588)4016918-2 (DE-588)4114528-8 (DE-588)4426217-6 |
title | Mechanics of viscoelastic solids |
title_auth | Mechanics of viscoelastic solids |
title_exact_search | Mechanics of viscoelastic solids |
title_full | Mechanics of viscoelastic solids Aleksey D. Drozdov |
title_fullStr | Mechanics of viscoelastic solids Aleksey D. Drozdov |
title_full_unstemmed | Mechanics of viscoelastic solids Aleksey D. Drozdov |
title_short | Mechanics of viscoelastic solids |
title_sort | mechanics of viscoelastic solids |
topic | Mathematisches Modell Polymers Viscosity Mathematical models Viscoelastic materials Mechanical properties Viscoelasticity Mathematical models Festkörper (DE-588)4016918-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd Viskoelastisches Medium (DE-588)4426217-6 gnd |
topic_facet | Mathematisches Modell Polymers Viscosity Mathematical models Viscoelastic materials Mechanical properties Viscoelasticity Mathematical models Festkörper Viskoelastisches Medium |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008142122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT drozdovalekseyd mechanicsofviscoelasticsolids |