Series of Faber polynomials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Gordon and Breach Science Publ.
1998
|
Schriftenreihe: | Analytical methods and special functions
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Aus dem Russ. übers. |
Beschreibung: | XX, 301 S. |
ISBN: | 9056990586 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011932993 | ||
003 | DE-604 | ||
005 | 19980511 | ||
007 | t | ||
008 | 980511s1998 |||| 00||| eng d | ||
020 | |a 9056990586 |9 90-5699-058-6 | ||
035 | |a (OCoLC)40054965 | ||
035 | |a (DE-599)BVBBV011932993 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-83 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 515/.243 |2 21 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 30E10 |2 msc | ||
084 | |a 30E05 |2 msc | ||
100 | 1 | |a Suetin, Pavel K. |e Verfasser |4 aut | |
240 | 1 | 0 | |a Riad mnogochlenov Faber |
245 | 1 | 0 | |a Series of Faber polynomials |c P. K. Suetin |
264 | 1 | |a Amsterdam [u.a.] |b Gordon and Breach Science Publ. |c 1998 | |
300 | |a XX, 301 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Analytical methods and special functions |v 1 | |
500 | |a Aus dem Russ. übers. | ||
650 | 4 | |a Polynomials | |
650 | 4 | |a Series | |
830 | 0 | |a Analytical methods and special functions |v 1 |w (DE-604)BV011932737 |9 1 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066114&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008066114 |
Datensatz im Suchindex
_version_ | 1804126520239718400 |
---|---|
adam_text | CONTENTS
Preface ix
Preface to the English Edition xv
Notation xix
Chapter I. Some results of approximation theory 1
§ 1. The best approximations of real functions 1
§ 2. Lebesgue inequalities for Fourier and Taylor series 7
§ 3. Jackson approximating sums 15
§ 4. Estimates of the Fourier and Taylor coefficients 22
§ 5. Analogues of the Weierstrass theorem on approximation
in a complex domain 28
Chapter II. The elementary properties of Faber polynomials 33
§ 1. Fundamental definitions and examples 33
§ 2. Algebraic properties of Faber polynomials 39
§ 3. The simplest asymptotic properties 42
§ 4. Generalized Faber polynomials 44
Chapter III. Faber series with the simplest conditions 49
§ 1. Faber polynomial series 49
§ 2. Faber series of analytic functions 51
§ 3. The direct theorem of Bernstein Walsh 54
§ 4. The inverse theorem of Bernstein Walsh 56
Chapter IV. Asymptotic properties of Faber polynomials 60
§ 1. Estimation of Faber polynomials inside a domain 60
§ 2. Asymptotic representations outside a domain 62
§ 3. Faber polynomials with singularities of the weight function 70
§ 4. Faber polynomials with singularities of the contour 73
Chapter V. Convergence of Faber series inside a domain 77
§ 1. Some conditions for convergence inside a domain 77
§ 2. The main theorem of Faber series 83
§ 3. Expansion of Cauchy type integrals with respect to area 86
§ 4. The table of conditions for Faber series convergence 90
§ 5. Generalized Faber series 93
v
vi CONTENTS
Chapter VI. Series of Faber polynomials 100
§ 1. Conditions for convergence inside a domain 100
§ 2. Boundary properties of series of Faber polynomials 103
§ 3. Uniqueness of Faber polynomial series 108
§ 4. Series of generalized Faber polynomials 113
Chapter VII. Some properties of Faber operators 117
§ 1. The Faber operator and its simplest properties 117
§ 2. Boundary properties of Faber operators 120
§ 3. Estimates of the norms of Faber operators 123
§ 4. Transformation of rational and meromorphic functions 128
§ 5. Generalized Faber operators 131
Chapter VIII. Faber series in a closed domain 136
§ 1. Domains with a strongly smooth boundary 136
§ 2. Theorem concerning the inverse Faber operator 142
§ 3. Al per s principal results 148
§ 4. Another summation formula 156
§ 5. Generalized Faber series in a closed domain 160
Chapter IX. Faber polynomials and the theory of univalent
functions 168
§ 1. The method of areas in the theory of univalent functions 168
§ 2. Lebedev s results 172
§ 3. Pommerenke s results for Faber polynomials 177
§ 4. The results of Kovari Pommerenke 184
§ 5. The results of Lesley, Vinge Warschawski 191
Chapter X. Faber series in canonical domains 196
§ 1. The auxiliary properties of Taylor series 196
§ 2. Bounded functions in a canonical domain 199
§ 3. The general case of an arbitrary continuum 205
§ 4. The case of poles on a level line 208
Chapter XI. Faber series and the Riemann boundary problem 214
§ 1. The approximate solution of Riemann problem 214
§ 2. Some properties of Faber series of the second kind 218
§ 3. Faber series and generalized functions 223
§ 4. Riemann problem in the class of generalized functions 230
Chapter XII. The summation formula of Dzyadyk 233
§ 1. Dzyadyk s formula for Faber series summation 233
§ 2. Summation of the generalized Faber series 237
§ 3. Summation of Faber series in a closed domain 241
§ 4. Faber approximation of the Cauchy kernel 245
§ 5. Nikol skii s problem in a complex domain 248
Chapter XIII. Generalization of Faber polynomials and series 252
§ 1. Faber Walsh polynomials 252
§ 2. Faber Laurent series 255
CONTENTS vii
§ 3. Faber Dzhrbashyan rational functions 257
§ 4. Basic systems of Faber Erokhin 262
Chapter XIV. Some recent results 270
§ 1. Faber series of matrices and operators 270
§ 2. Faber operators with singularities of the weight function and
contour 273
§ 3. Faber series with singularities of weight function and contour 276
§ 4. The Faber Dirichlet operator 278
§ 5. The Faber series in the Dirichlet problem 280
Comments and Supplements 283
References 287
Authors Index 297
Subject Index 299
|
any_adam_object | 1 |
author | Suetin, Pavel K. |
author_facet | Suetin, Pavel K. |
author_role | aut |
author_sort | Suetin, Pavel K. |
author_variant | p k s pk pks |
building | Verbundindex |
bvnumber | BV011932993 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 |
ctrlnum | (OCoLC)40054965 (DE-599)BVBBV011932993 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01382nam a2200397 cb4500</leader><controlfield tag="001">BV011932993</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980511 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980511s1998 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9056990586</subfield><subfield code="9">90-5699-058-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)40054965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011932993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30E10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30E05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suetin, Pavel K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Riad mnogochlenov Faber</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Series of Faber polynomials</subfield><subfield code="c">P. K. Suetin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Gordon and Breach Science Publ.</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 301 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Analytical methods and special functions</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus dem Russ. übers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Analytical methods and special functions</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV011932737</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066114&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008066114</subfield></datafield></record></collection> |
id | DE-604.BV011932993 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:18:45Z |
institution | BVB |
isbn | 9056990586 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008066114 |
oclc_num | 40054965 |
open_access_boolean | |
owner | DE-824 DE-83 |
owner_facet | DE-824 DE-83 |
physical | XX, 301 S. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Gordon and Breach Science Publ. |
record_format | marc |
series | Analytical methods and special functions |
series2 | Analytical methods and special functions |
spelling | Suetin, Pavel K. Verfasser aut Riad mnogochlenov Faber Series of Faber polynomials P. K. Suetin Amsterdam [u.a.] Gordon and Breach Science Publ. 1998 XX, 301 S. txt rdacontent n rdamedia nc rdacarrier Analytical methods and special functions 1 Aus dem Russ. übers. Polynomials Series Analytical methods and special functions 1 (DE-604)BV011932737 1 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066114&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Suetin, Pavel K. Series of Faber polynomials Analytical methods and special functions Polynomials Series |
title | Series of Faber polynomials |
title_alt | Riad mnogochlenov Faber |
title_auth | Series of Faber polynomials |
title_exact_search | Series of Faber polynomials |
title_full | Series of Faber polynomials P. K. Suetin |
title_fullStr | Series of Faber polynomials P. K. Suetin |
title_full_unstemmed | Series of Faber polynomials P. K. Suetin |
title_short | Series of Faber polynomials |
title_sort | series of faber polynomials |
topic | Polynomials Series |
topic_facet | Polynomials Series |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008066114&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011932737 |
work_keys_str_mv | AT suetinpavelk riadmnogochlenovfaber AT suetinpavelk seriesoffaberpolynomials |