Forecasting principles and applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston, Mass. [u.a.]
Irwin McGraw-Hill
1998
|
Ausgabe: | 1. ed. |
Schriftenreihe: | The Irwin/MacGraw-Hill series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVIII, 802 S. graph. Darst. Diskette (9 cm) |
ISBN: | 0256134332 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011707021 | ||
003 | DE-604 | ||
005 | 20150311 | ||
007 | t | ||
008 | 980108s1998 d||| |||| 00||| eng d | ||
020 | |a 0256134332 |9 0-256-13433-2 | ||
035 | |a (OCoLC)633483178 | ||
035 | |a (DE-599)BVBBV011707021 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-945 |a DE-20 |a DE-188 |a DE-521 | ||
050 | 0 | |a H61.4.D45 1998 | |
082 | 0 | |a 003/.2/015195 | |
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a WIR 017f |2 stub | ||
084 | |a WIR 527f |2 stub | ||
100 | 1 | |a DeLurgio, Stephen A. |e Verfasser |0 (DE-588)130326763 |4 aut | |
245 | 1 | 0 | |a Forecasting principles and applications |c Stephen A. DeLurgio |
250 | |a 1. ed. | ||
264 | 1 | |a Boston, Mass. [u.a.] |b Irwin McGraw-Hill |c 1998 | |
300 | |a XXVIII, 802 S. |b graph. Darst. |e Diskette (9 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Irwin/MacGraw-Hill series | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Forecasting -- Mathematical models | |
650 | 4 | |a Forecasting -- Statistical methods | |
650 | 0 | 7 | |a Prognoseverfahren |0 (DE-588)4358095-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007894024&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007894024 |
Datensatz im Suchindex
_version_ | 1804126243900096512 |
---|---|
adam_text | Contents
PARTI
Foundations of Forecasting
1 Planning and Forecasting 3
Introduction 4
Purpose of This Book 4
Information Revolution 4
The Importance of Forecasting 4
Financial and Strategic Importance of Forecasting 5
The Pursuit of Knowledge 6
The Commonality of Forecasting 6
The Management Decision Hierarchy 7
Why Forecast? 9
Forecasts Are Necessary Because of Implementation Lead Times 9
What Is a Forecast? 9
A Forecast Should Be a Point. Range, and Probability Estimate 9
What Should Be Forecast? 11
Dependent versus Independent Demands 11
Forecasting Hierarchy—The Process of Aggregation/Disaggregation 11
Common Time Series Patterns 13
Time Series versus Cross Sectional Analysis 13
Random Patterns 13
Trend Patterns 13
Seasonal Patterns 14
Cyclical Patterns 16
Autocorrelated Patterns 16
Outliers 19
Interventions—Unplanned and Planned Events 19
Modeling Combinations of Patterns 20
Overview of Forecasting Methods 21
Time Series (Univariate) Forecasting Methods 21
Causal (Multivariate) Forecasting Methods 21
Xiv Contents
Qualitative Forecasting Methods 22
The Art of Forecasting—Management Intuition and Involvement 23
Model Summary 23
Parts of This Book 25
Forecasting Method Selection—A Preview 26
The Forecasting Process 26
Summary 30
Key Terms 31
Key Formulas 31
Problems 32
Minicases 33
References 34
2 Statistical Fundamentals for Forecasting 36
The Importance of Pattern 37
Descriptive Statistics 37
Descriptive and Graphical Tools 38
Probabilities 38
Probability Distributions in Forecasting 39
Univariate Summary Statistics 41
Predicting Values Using Mean, Median, or Mode 41
Comparisons of Measures 42
Properties of Central Values 42
Mean Forecast Error 43
Measuring Errors—Standard Deviation and MAD 43
Normal Distribution 45
Characteristics of the Normal Distribution 45
Describing All Normal Distributions 47
Prediction Intervals 48
MAD—An Easily Calculated Measure of Scatter 48
A Forecasting Example Using Sales of Product A 49
Frequency Distribution Solution 50
Fitting versus Forecasting 51
Absolute Error Measures 52
Relative Measures of Error 54
Cautions in Using Percentages 56
Other Error Measures 56
Statistical Significance Test for Bias 56
Correlation Measures 58
Correlations and Covariances 59
Correlation—A Relative Measure of Association 60
Correlation Coefficient—Big City Bookstore 61
Statistical Significance of the Correlation Coefficient 62
Cause and Effect 66
Correlation Coefficients Measure Linear Association 66
Autocorrelations and ACF (Ic) 67
ACFs of Random Series 70
Random Series and White Noise 70
Contents
XV
ACFs of Trending Series 71
ACFs of Seasonal Series 72
Which Measure of Correlation? 73
Summary 76
Key Terms 76
Key Formulas 77
Review Problems Using Your Software 79
Problems 79
Minicases 82
References 84
Appendix 2 A Expected Values, White Noise, and Correlations 84
Appendix 2 B (^ Statistic for White Noise ACF(/t)s 88
3 Simple Linear Regression Analysis 92
Introduction 93
Dependent and Independent Variables 93
Scatter Plots 93
Purposes of Regression Analysis 96
Method of Least Squared Deviations 96
Fitted Residual and Forecasted Error 99
Regression Output 100
Standard Error of Estimate (Syx) 102
Adjusted Coefficient of Determination, (R2) 104
Testing the Significance of Regression Coefficients 106
Analysis of Variance in Regression Analysis 107
Total, Explained, and Unexplained Variance 107
TheF Testof ANOVA 108
F Test and t2 110
Regression Assumptions 110
Assumption 1: The Fitted Relationship Is of the Correct Form 110
Assumption 2: Homoscedasticity of Errors 111
Assumption 3: No Serial Correlation in the True Errors (v s) 112
Assumption 4: The Distribution of Errors about the Regression Line Is
Approximately Normally Distributed 112
Assumption 5: The Relationship Includes All Important Variables 114
Assumption 6: No Problems from Highly Correlated Xs 114
Serial and Autocorrelation Problems 114
Durbin Watson Statistic 115
Sampling and Regression Analysis 117
Confidence and Prediction Intervals 118
Standard Error of the Regression Line (Sr) 118
Standard Error of Forecast (Sf) 119
Review of Regression Analysis Steps 120
Cause and Effect 120
Nonlinear Models Using Linear Regression 121
Cautions in Using Nonlinear Relationships 122
Regression Advantages and Disadvantages 125
Summary 126
Key Terms 126
Contents
Key Formulas 126
Review Problems Using Your Software 129
Problems 129
Minicases 132
References 132
Appendix 3 A Cross Correlation Coefficients 132
PART II
Univariate Methods
4 Simple Smoothing Methods 147
Moving Averages 148
Simple Moving Averages (SMA) 148
Choosing the Best Forecasting Model 150
Optimal Number of Periods in a Moving Average 150
When to Use Simple Moving Averages 151
Weighted Moving Averages (WMA) 151
Limitations of the SMA and the WMA 153
Exponential Smoothing 153
Single Exponential Smoothing (SES) 154
The Smoothing Constant 155
Estimating Alpha 156
Alpha Based on Autocorrelations 156
Alpha Based on Desired Simple Moving Average 156
Alpha Based on Minimum RSE 157
Derivation of Exponential Weights for Past Actuals 157
Seasonal SES—Forecasting U.S. Marriages 159
Adaptive Response Rate Exponential Smoothing (ARRES) 162
TST and Erratic Series 164
Accuracy of ARRES 165
Forecasting Low Value or Erratic Series 165
Patterns in Low Value Series 166
Low Values and Erratic Series 166
Group Patterns in Low Value or Erratic Series 166
Extremely Low Values 166
Summary 166
Key Terms 167
Key Formulas 167
Review Problems Using Your Software 168
Problems 168
Minicases 171
References 172
5 Decomposition Methods and Seasonal Indexes 174
Classical Decomposition Method 175
Contents
Interpreting Seasonal Indexes 180
Deseasonalizing Values to Identify Trend Cycle 181
Using Simple Linear Regression to Forecast Trend 181
Steps in Classical Multiplicative Decomposition 182
Additive Decomposition Method 185
Decomposition of Monthly Data 186
Census Method II X 11 190
Decomposition Using Regression Analysis 192
Additive Seasonal Regression Models 193
Multiplicative Seasonal Regression Models 194
Testing the Significance of Seasonal Indexes 195
Advantages 196
Disadvantages 196
Summary 197
Key Terms 197
Key Formulas 197
Review Problems Using Your Software 198
Problems 199
Minicases 202
References 202
6 Trend Seasonal and Holt Winters Smoothing 204
Estimating Trends with Differences 205
Forecasting with Differences 207
Statistical Significance Test for Trend 207
Advantages and Disadvantages of Forecasting with Differences 210
Nonlinear Trends and Second Differences 210
Logarithms 212
Seasonal Differences to Model Seasonality and Trends 212
Double Moving Averages 215
Advantages 217
Disadvantages 217
Brown s Double Exponential Smoothing 218
Starting Values of s; and S, 219
Optimal Smoothing Constant 220
Advantages 220
Disadvantages 221
Holt s Two Parameter Trend Model 221
Advantages 224
Disadvantages 224
Winters Three Parameter Exponental Smoothing 224
Initialization of Starting Values 228
Ongoing Use of the Model 229
Additive and Multiplicative Factors 229
Data Requirements 230
Advantages 230
Disadvantages 231
Trend Dampening 231
Summary 232
Contents
Key Formulas 232
Review Problems Using Your Software 234
Problems 235
Minicases 238
References 239
Appendix 6 A Fourier Series Analysis 240
PART HI
Untvariate ARIMA Methods
7 Univariate ARIMA Models: Introduction 267
ARIMA Overview 268
Process (Population) versus Realization (Sample) 268
ARIMA Model Building Steps 269
ARIMA Model Assumptions 269
ARIMA Notation 270
ARIMA Processes 270
Autoregressive Process—ARIMA( 1,0,0,) 270
Moving Average Process—ARIMA(0,0,1) 271
Integrated Processes—ARIMA(0,l,0) 273
Deterministic Trend Process—ARIMA(0,1,0) 1 274
ARIMA Model Identification 275
Random Walk and Trend: ACFs and PACFs 276
Autoregressive (1,0,0) ACFs and PACFs 276
Moving Average (0,0,1) ACFs and PACFs 278
White Noise 278
(0,0,0) ACFs and PACFs 278
The (2 Statistic and White Noise Diagnosis 280
Characteristics of a Good Model 280
Time Series Examples 280
White Noise Time Series 281
Daily Stock Prices (STOCKA.DAT) 281
An Autoregressive Time Series (DAIRY.DAT) 284
A Moving Average Time Series (FAD.DAT) 286
Variance Stationarity 290
U.S. Stock Index (1,1,0)1,1 Model 292
The Backshift Operator 298
Integrated Stochastic Process (0,1,0) 299
Autoregressive Processes: ARIMA(/j,0,0) Models 300
Model Relationships: AR(p), l(d), and MA(q) 301
ARIMA (1,0,0) Software Output 302
Moving Average Processes: ARIMA(0,0,^) Models 303
General Moving Average Process: ARIMA(0,0,g) 304
AR(2), MA(2), ARMA( 1,1), and Seasonal Processes 305
ARIMA (p,d,q) Models 310
Parameter Redundancy: Mixed Models 310
Contents
Summary 314
Key Terms 314
Key Formulas 314
Review Problems Using Your Software 316
Problems 317
Minicases 319
References 320
Appendix 7 A Useful Statistical Definitions Used in Derivations 321
Appendix 7 B White Noise and Stationary 322
Appendix 7 C Theoretical ACFs for an ARIMA( 1,0,0) Process 322
Appendix 7 D Theoretical ACFs for an ARIM A(0,0,1) Process 323
Appendix 7 E Bounds of Invertibility and Stationarity 324
Appendix 7 F Example ARIMA Data Sets 325
Appendix 7 G PACFs and the Yule Walker Equations 326
8 ARIMA Applications 330
The ARIMA Model Building Process 331
SERIESB.DAT: Common Stock Prices 333
Identification 333
Estimation 334
Diagnosis 334
Forecasting 338
Seasonal Time Series 339
Demand for an Animal Pharmaceutical (PHARMDEM.DAT) 340
Identification 340
Estimation 340
Diagnosis 341
Forecasting 343
California Utility Electricity Demand (MWHRS.DAT) 343
Identification 343
Estimation 348
Diagnosis 348
Transforming Logs to Original Values 351
Trends Using Logs 351
Japan Stock Index 352
Identification (JAPAN.DAT) 352
Estimation 352
Diagnosis 1 352
Diagnosis 2 355
Interpretation: ARIMA( 1,1,0) 1, Trend 356
Interpretation: ARIMA( 1,1,0), No Trend 359
Comparison 359
Summary: Fit and Forecast, Japan Index 361
Summary and Conclusions 361
Identification 362
Estimation 362
Diagnosis 363
Forecasting 363
A Fresh Perspective 363
Contents
Key Terms 364
Key Formulas 364
Review Problems Using Your Software 365
Problems 366
Minicases 367
References 367
9 ARIMA Forecast Intervals 369
Conditional and Unconditional ARIMA Forecasts 370
Unconditional Forecasts 370
Conditional Forecast 372
Unconditional Forecast 372
Forecast Mean Squared Error (FMSE) and Standard Error (FSE) 373
General ARIMA Models: Psi Weights i/r 374
EMSE(m) and EFSE(m) Calculations 376
Two Period Ahead Prediction Intervals 377
Three Period Ahead Prediction Intervals 378
General EFSE(m) Value 378
ARIMA Prediction Intervals 379
White Noise Prediction Intervals 379
Autoregressive Prediction Intervals 380
Nonstationary Prediction Intervals 382
Moving Average Prediction Intervals 384
Season Nonstationary Prediction Intervals 385
Other Prediction Intervals 388
Summary 392
Key Terms 392
Key Formulas 392
Review Problems Using Your Software 394
Problems 393
Minicases 396
References 396
PART IV
Multivariate/Causal Methods
10 Multiple Regression of Time Series 401
Linear Multiple Regression Models 402
General Multiple Regression Model 402
Specific Multiple Regression Model 402
Adjusted Coefficient of Determination R2 405
Partial(Net) Regression Coefficients 405
Regression Plane 407
Multiple Regression Modeling Process 409
Multicollinearity 409
Contents
Multicollinearity Solutions 412
Example Multicollinearity Problem (MULT.DAT) 413
Partial F Test for Determining Inclusion of Variables 414
Serial Correlation Problems 416
Forecasting 420
Cochrane Orcutt Iterative Least Squares (COILS) 420
Cochrane Orcutt Example #2 421
Stock Index Analysis Using COILS 422
First Order Differences 424
Elasticities and Logarithmic Relationships 425
Heteroscedasticity 426
Incorrect Functional Form 426
Goldfeld Quandt Test 428
Weighted Least Squares 430
Generalized Least Squares 433
Beta Coefficients 434
Dichotomous (Dummy) Variables 434
Event Influence 435
Changes in the Constant 435
Changes in the Slopes 436
Prediction and Confidence Invervals 437
Parsimony and Data Requirements 438
Nonrepresentative Samples 439
Representative Samples 439
Maximizing^2 441
Automated Regression Modeling 441
Summary and Conclusions 441
Key Terms 442
Key Formulas 442
Review Problems Using Your Software 444
Problems 444
Minicases 448
References 449
Appendix 10 A Deriving Normal Equations and Regression
Coefficients 450
11 Econometric Methods 452
Biased Single Equation Relationships 453
Recursive versus Nonrecursive Methods 454
Recursive System of Structural Equations 454
A Simple Recursive System 454
Endogenous. Exogenous, and Intervening Variables 455
Path Coefficients 456
Total, Direct, and Indirect Influences 457
General Assumptions of Structural Equations 460
Weak Causal Order 460
Causal Closure: No Specification Errors 460
Partial Correlation Coefficients 461
Contents
Causal Order and Closure 462
Specification Errors 463
Specification Errors, Randomization, and Sample Size Effects 464
Small Sample, Incorrect Specification 465
Large Sample, Incorrect Specification, Hopes of Randomization 465
Small Sample, Correct Specification 467
Large Sample, Correct Specification 467
Granger Causality 469
Granger Causality Test 470
Example of Granger Causality Test 470
Limitations of Granger Causality 472
Simultaneous Equations—Nonrecursive Structural Equations 472
Simultaneity Problems 473
Identification Requirements 473
Two Stage Least Squares, (2SLS) 474
Reduced Form Equations 474
Building Materials Example of 2SLS (BMS.DAT) 475
Quantity Demanded and Supplied—Equilibrium Simultaneity 477
Identification 478
Other Simultaneous Equation Methods 478
Indirect Least Squares (ILS) 478
Serially Correlated Errors and Lagged Dependent Variables 478
Seemingly Unrelated Regression (SUR) Model 478
Three Stage Least Squares (3SLS) 479
Testing for Simultaneity 479
Summary 480
Key Terms 481
Key Formulas 481
Review Problems Using Your Software 484
Problems 484
Minicases 487
References 487
12 ARIMA Intervention Analysis 490
Common Intervention Types 492
Zero Order Intervention Functions 492
Pulse, Abrupt Temporary Impact 492
Abrupt, Temporary Impact 493
Abrupt, Permanent Impact 494
Abrupt, Temporary Impact 494
First Order Intervention Functions 494
Gradual, Permanent Impact 494
Gradual, Temporary Impact 497
Other Examples 498
General Intervention Functions 498
The Noise Model 498
Nonstationary Series 499
Abrupt, Permanent Interventions for Nonstationary Series 500
Contents X
Intervention Modeling 502
Steps of Intervention Analysis 502
Zero Order Intervention Model—Demand at a Community Blood Bank
(BLOOD.DAT) 504
Noise Model Identification 505
Univariate Analysis of Intervention Series 508
Zero Order Intervention Model—Nonstationary Demand for Bottled Water
(WATER.DAT) 508
Modeling the Stock Market Crash of 1987 (SP500I.DAT) 515
First Order Model of Stock Market Crash 518
Interpretation of Natural Log Intervention Models 518
First Order Intervention Function—Advertising Impact on Airline
Passengers 522
Intervention Effect 522
Bounds of Stability for First Order Intervention Functions 527
Summary 527
Key Terms 528
Key Formulas 528
Review Problems Using Your Software 530
Problems 530
Minicases 531
References 531
13 Multivariate ARIMA Transfer Functions 533
Transfer Functions 535
Zero Order Transfer Functions (TFs) 535
First Order Transfer Functions 537
Pulses and Shifts 540
Steps of MARIMA Modeling 541
Identification Using Cross Correlation Functions (CCF(fc)) 543
Two Hypothetical Applications 543
Achieving Stationarity of Input and Output 544
Prewhitening the Input Series 545
Pretreating the Output Series 545
Calculating CCFs to Identify r, s, and b 546
Using Residuals of the TF to Identify TF Problems 546
Diagnostics 546
Using Residuals of the TF to Identify Nt 547
New York and London IBM Stock Prices (IBMNYLN.DAT) 548
Identification of NY, = /(LN, _ k) 548
Cross Correlation Function 551
Identification of London Price = /(New York (_ k.) 551
Identifying r, s, and b 552
Estimation and Diagnostics 552
Fit and Forecast 554
Cross Correlations and Identification 556
Several Identification Examples 556
Ambiguous Identifications 558
Contents
Lumber Sales = /(Advertising) (LUMBERAD.DAT) 558
Achieving Stationarity 558
Tentative Nt for Yt 559
Prewhitening Xt to Identify the TF 560
Estimating and Diagnosing the TF 560
Multiple Input Transfer Functions—Automobile Market Share = /(Advertised
quality, Price ratio) 562
Feedback Systems 572
Summary 572
Key Terms 573
Key Formulas 574
Review Problems Using Your Software 575
Problems 576
Minicases 577
References 577
Appendix 13 A Estimating Impulse Response Weights and Initial
Coefficients 578
PARTV
Cyclical, Qualitative, and Artificial Intelligence Methods
14 Cyclical Forecasting Methods 583
Theory Driven Analysis 584
Why Model Business Cycles? 584
Understanding Cyclical Influences 585
The Phases of Business Cycles 585
Important Economic Indicators 587
Leading, Coincident, and Lagging Indicators 587
Leading Economic Indicators 589
Cyclical Influences and Financial Markets 589
The Fed s Influence 589
Other Economic Indicators 590
Forecasting Recessions 593
Cyclical Forecasting Methods 595
Decomposition of Cyclical Indexes 596
Decomposition Forecasting 600
Cautions with Cyclical Indexes 600
Paired Indicators and Change Analysis 601
Change Measurements 601
Paired Indicators 601
Percentage Ratios 602
Ratio Behavior Explained 604
Ratio of U.S. Composite Coincident and Lagging Indexes 605
Cautions with Indicators and Ratios 607
Other Leading Indicators 608
Pressure Cycles (PC) 608
Contents „,
Diffusion Indexes 611
Summary 612
Key Terms 613
Key Formulas 613
Review Problems Using Your Software 614
Problems 614
Minicases 616
References 617
Appendix 14 A Some General Theories about Cycles 619
15 Technological and Qualitative Forecasting Methods: Long Term
Forecasting 624
Subjective Forecasting Methods 627
Jury of Executive Opinion 629
Sales Force Composite Methods 630
Marketing Research and Survey Methods 631
Exploratory Forecasting Methods 632
Scenario Analysis 633
Delphi Method 636
Cross Impact Analysis 638
Analogy Methods 638
Trend Analysis 639
Nominal Group Process 639
Case Study Method 639
Analytic Hierarchy Process 641
Normative Forecasting Methods 641
Relevance Trees (RT) 642
Systems Dynamics 643
S Curves of Growth 643
Technological Life Cycles 643
Substitution Curves 645
Modeling Growth Curves 645
Gompertz Curves 646
Logistics (Pearl) Curve 649
Comparing Logistics (Pearl) and Gompertz Curves 651
Stability of Growth Curves 653
Summary 653
Key Terms 654
Key Formulas 655
Review Problems Using Your Software 655
Problems 656
References 658
16 Artificial Neural Networks, Expert Systems, and Genetic
Algorithms 662
Practical Implications of ESs. ANNs, and GAs 663
* » a ,, nnrf Ar Ap] fnmnlexitv 663
i Contents
Artificial Intelligence (AI)/Expert Systems (ES) 664
Conventional Program Systems versus Expert Systems 664
Purpose of an Expert System 664
Parts of an Expert System 665
Advantages of Expert Systems 665
Disadvantages of Expert Systems 666
Expert System Applications in Forecasting 666
I. Data Entry and Validation Expert System 666
II. Model Selection and Forecasting Expert System 668
III. System Control and Maintenance Expert System 669
Artificial Neural Networks (ANNs) 670
Architecture of ANNs 672
Neurodes 673
ANN Applications 673
Steps in Developing an ANN 674
1. Determine the Structure of the ANN 678
2. Divide the Data into Training and Validation Sets 679
3. Scale All Input Variables 679
4. Set Initial Weights and Start a Training Epoch 680
5. Input Scaled Variables 681
6. Distribute the Scaled Inputs 681
7. Weight and Sum Outputs at Receiving Nodes 681
8. Transform Hidden Inputs to Outputs 681
9. Weight and Sum Hidden Node Outputs at the Output Nodes 682
10. Transform Inputs at the ANN Output Nodes 682
11. Calculate Output Error 682
12. Backpropagate Errors to Adjust Weights 682
13. Continue the Epoch 682
14. Calculate the Epoch RMS 682
15. Judge Out of Sample Validity 683 ;
16. Use the Model in Forecasting 683 j
Understanding the Transfer Function 683
The Function of Bias 684
Other Transfer Functions 685
Describing Rates of Change in ANNs 685
Forecasting Quarterly U.S. Marriages 686 |
Scaling Input Variables 687 ,
Choosing the Target RMS 688
The Results of Training 689
Forecasting the S P 500 691
Sales with an Interaction Effect (INTERACT.DAT) 691
Backpropagation and Training ANNs 693
The Generalized Delta Rule 694
ANN Summary 696
Comparing ANNs and ESs 697
Genetic Algorithms (GA) 698
What Is a Genetic Code? 698
Evolutionary GA Processes 699
A Simple Crossover Example 700
Contents xxvH
Summary 701
Key Terms 702
Key Formulas 702
Review Problems Using Your Software or Enclosed Spreadsheets 704
Problems 704
Minicases 706
References 706
Appendix 16 A Mathematics of a Backpropagation Neural Network 708
PART VI
Combining, Validation, and Managerial Issues
17 Control, Validation, and Combining Methods 713
Tracking Signal Control Methods 714
Tracking Signals: Detecting Cumulative (Biased) Errors 714
CUSUM, Tracking Signal 715
Tracking Signal: CUSUM,/MAD, 716
Trigg Tracking Signal: SAD(/MAD( 717
An Example Application of TSM, and TST, 717
Autocorrelation Tracking Signal, r( 719
Backward CUSUM V Mask Tracking Signal 720
Choosing a Simple Tracking Signal 722
Reasonableness Tests 723
Combining Forecast Methods 723
Simple Average Combinations 724
Using Weighted Averages 725
Weights Inverse to the Sum of Squared Errors 725
Weights Determined by Regression Analysis 726
Past Research 727
Using Combinations of Forecasts 727
Consistent Forecasts: The One Number Principle 728
Achieving Consistent Forecasts 729
Item versus Cumulative Forecast Accuracy 729
Group Forecasts 729
Assumption of Independence 730
Using Groups in Forecasting Systems 731
Pyramidal Forecasting Systems 731
Validation Methods: Occam s Razor and Parsimony 733
Model Complexity versus Forecast Accuracy 734
Akaike and Schwarz Bayesian Criteria 734
Split Sample and Out of Sample Validation 736
Extreme Value Behavior 736
Jackknife 737
Bootstrap 738
Summary 738
I Key Terms 739
»»• » 1~ tin
Contents
i
Review Problems Using Your Software 741 )
Problems 741
Minicases 745
References 745
18 Method Characteristics, Accuracy, and Data Sources 748
Characteristics of Forecasting Methods 749
Horizon Length (a) 749
Accuracy at Each Horizon (b) 749
Cost of Development (c) 752
Data Period Used (d) 753
Frequency of Revision (e) 755
Type of Application (f) 755
Automation Potential (g) 755
External and Subjective Data (h) 756
Pattern Recognition Capability (i) 756
Number of Observations Required (j) 756 !
In Summary 757 j
Forecast Accuracy 758 I
Accuracy of Time Series Methods 758
Summary 762
Key Terms 763
Problems 764
Minicases 764
References 765
Appendix A Forecasting Data Sources 766
Appendix B Outlier Detection and Adjustment Procedures 774
Appendix C Student / Distribution 780
Appendix D Areas of the Standard Normal Distribution 781
Appendix E Critical Values of Chi Square 781
Appendix F The F Distribution for a = .05 and a = .01 (Bold) for Many Possible Degrees
of Freedom 783
Appendix G Critical Values of the Durbin Watson Test Statistic for a = .05 785
Index 787
|
i
|
any_adam_object | 1 |
author | DeLurgio, Stephen A. |
author_GND | (DE-588)130326763 |
author_facet | DeLurgio, Stephen A. |
author_role | aut |
author_sort | DeLurgio, Stephen A. |
author_variant | s a d sa sad |
building | Verbundindex |
bvnumber | BV011707021 |
callnumber-first | H - Social Science |
callnumber-label | H61 |
callnumber-raw | H61.4.D45 1998 |
callnumber-search | H61.4.D45 1998 |
callnumber-sort | H 261.4 D45 41998 |
callnumber-subject | H - Social Science |
classification_rvk | QH 237 |
classification_tum | WIR 017f WIR 527f |
ctrlnum | (OCoLC)633483178 (DE-599)BVBBV011707021 |
dewey-full | 003/.2/015195 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003/.2/015195 |
dewey-search | 003/.2/015195 |
dewey-sort | 13 12 515195 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01637nam a2200433 c 4500</leader><controlfield tag="001">BV011707021</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150311 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980108s1998 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0256134332</subfield><subfield code="9">0-256-13433-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633483178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011707021</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H61.4.D45 1998</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003/.2/015195</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 527f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeLurgio, Stephen A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130326763</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forecasting principles and applications</subfield><subfield code="c">Stephen A. DeLurgio</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass. [u.a.]</subfield><subfield code="b">Irwin McGraw-Hill</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 802 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">Diskette (9 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Irwin/MacGraw-Hill series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting -- Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting -- Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007894024&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007894024</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV011707021 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:14:22Z |
institution | BVB |
isbn | 0256134332 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007894024 |
oclc_num | 633483178 |
open_access_boolean | |
owner | DE-739 DE-945 DE-20 DE-188 DE-521 |
owner_facet | DE-739 DE-945 DE-20 DE-188 DE-521 |
physical | XXVIII, 802 S. graph. Darst. Diskette (9 cm) |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Irwin McGraw-Hill |
record_format | marc |
series2 | The Irwin/MacGraw-Hill series |
spelling | DeLurgio, Stephen A. Verfasser (DE-588)130326763 aut Forecasting principles and applications Stephen A. DeLurgio 1. ed. Boston, Mass. [u.a.] Irwin McGraw-Hill 1998 XXVIII, 802 S. graph. Darst. Diskette (9 cm) txt rdacontent n rdamedia nc rdacarrier The Irwin/MacGraw-Hill series Mathematisches Modell Forecasting -- Mathematical models Forecasting -- Statistical methods Prognoseverfahren (DE-588)4358095-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Prognoseverfahren (DE-588)4358095-6 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007894024&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | DeLurgio, Stephen A. Forecasting principles and applications Mathematisches Modell Forecasting -- Mathematical models Forecasting -- Statistical methods Prognoseverfahren (DE-588)4358095-6 gnd |
subject_GND | (DE-588)4358095-6 (DE-588)4123623-3 |
title | Forecasting principles and applications |
title_auth | Forecasting principles and applications |
title_exact_search | Forecasting principles and applications |
title_full | Forecasting principles and applications Stephen A. DeLurgio |
title_fullStr | Forecasting principles and applications Stephen A. DeLurgio |
title_full_unstemmed | Forecasting principles and applications Stephen A. DeLurgio |
title_short | Forecasting principles and applications |
title_sort | forecasting principles and applications |
topic | Mathematisches Modell Forecasting -- Mathematical models Forecasting -- Statistical methods Prognoseverfahren (DE-588)4358095-6 gnd |
topic_facet | Mathematisches Modell Forecasting -- Mathematical models Forecasting -- Statistical methods Prognoseverfahren Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007894024&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT delurgiostephena forecastingprinciplesandapplications |