On a motion of a solid body in a viscous fluid: two-dimensional case
Abstract: "In this paper we investigate a two-dimensional problem on a motion of a solid body in a bounded contaner [sic] filled by a viscous fluid. The main assumption making possible to prove the global existence of a generalized solution is that the boundaries of the body and of the contaner...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1996
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9617 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper we investigate a two-dimensional problem on a motion of a solid body in a bounded contaner [sic] filled by a viscous fluid. The main assumption making possible to prove the global existence of a generalized solution is that the boundaries of the body and of the contaner [sic] are curves of the class C². We show that in this case the body hits the wall with zero speed and does not move during touching." |
Beschreibung: | 20 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011645900 | ||
003 | DE-604 | ||
005 | 20060518 | ||
007 | t | ||
008 | 971118s1996 gw t||| 00||| ger d | ||
016 | 7 | |a 951398334 |2 DE-101 | |
035 | |a (OCoLC)38039463 | ||
035 | |a (DE-599)BVBBV011645900 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM M 9617 | ||
100 | 1 | |a Hoffmann, Karl-Heinz |d 1939- |e Verfasser |0 (DE-588)131372475 |4 aut | |
245 | 1 | 0 | |a On a motion of a solid body in a viscous fluid |b two-dimensional case |c K.-H. Hoffmann ; V. N. Starovoitov |
264 | 1 | |a München |c 1996 | |
300 | |a 20 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9617 | |
520 | 3 | |a Abstract: "In this paper we investigate a two-dimensional problem on a motion of a solid body in a bounded contaner [sic] filled by a viscous fluid. The main assumption making possible to prove the global existence of a generalized solution is that the boundaries of the body and of the contaner [sic] are curves of the class C². We show that in this case the body hits the wall with zero speed and does not move during touching." | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Fluid mechanics | |
650 | 4 | |a Navier-Stokes equations | |
650 | 4 | |a Numerical analysis | |
700 | 1 | |a Starovojtov, Viktor N. |e Verfasser |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9617 |w (DE-604)BV006186461 |9 9617 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007849104 |
Datensatz im Suchindex
_version_ | 1804126179356049408 |
---|---|
any_adam_object | |
author | Hoffmann, Karl-Heinz 1939- Starovojtov, Viktor N. |
author_GND | (DE-588)131372475 |
author_facet | Hoffmann, Karl-Heinz 1939- Starovojtov, Viktor N. |
author_role | aut aut |
author_sort | Hoffmann, Karl-Heinz 1939- |
author_variant | k h h khh v n s vn vns |
building | Verbundindex |
bvnumber | BV011645900 |
ctrlnum | (OCoLC)38039463 (DE-599)BVBBV011645900 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01613nam a2200373 cb4500</leader><controlfield tag="001">BV011645900</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060518 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">971118s1996 gw t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">951398334</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38039463</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011645900</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9617</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoffmann, Karl-Heinz</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131372475</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a motion of a solid body in a viscous fluid</subfield><subfield code="b">two-dimensional case</subfield><subfield code="c">K.-H. Hoffmann ; V. N. Starovoitov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9617</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper we investigate a two-dimensional problem on a motion of a solid body in a bounded contaner [sic] filled by a viscous fluid. The main assumption making possible to prove the global existence of a generalized solution is that the boundaries of the body and of the contaner [sic] are curves of the class C². We show that in this case the body hits the wall with zero speed and does not move during touching."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navier-Stokes equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Starovojtov, Viktor N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9617</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9617</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007849104</subfield></datafield></record></collection> |
id | DE-604.BV011645900 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:13:20Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007849104 |
oclc_num | 38039463 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 20 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Hoffmann, Karl-Heinz 1939- Verfasser (DE-588)131372475 aut On a motion of a solid body in a viscous fluid two-dimensional case K.-H. Hoffmann ; V. N. Starovoitov München 1996 20 S. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9617 Abstract: "In this paper we investigate a two-dimensional problem on a motion of a solid body in a bounded contaner [sic] filled by a viscous fluid. The main assumption making possible to prove the global existence of a generalized solution is that the boundaries of the body and of the contaner [sic] are curves of the class C². We show that in this case the body hits the wall with zero speed and does not move during touching." Boundary value problems Fluid mechanics Navier-Stokes equations Numerical analysis Starovojtov, Viktor N. Verfasser aut Technische Universität <München>: TUM-MATH 9617 (DE-604)BV006186461 9617 |
spellingShingle | Hoffmann, Karl-Heinz 1939- Starovojtov, Viktor N. On a motion of a solid body in a viscous fluid two-dimensional case Technische Universität <München>: TUM-MATH Boundary value problems Fluid mechanics Navier-Stokes equations Numerical analysis |
title | On a motion of a solid body in a viscous fluid two-dimensional case |
title_auth | On a motion of a solid body in a viscous fluid two-dimensional case |
title_exact_search | On a motion of a solid body in a viscous fluid two-dimensional case |
title_full | On a motion of a solid body in a viscous fluid two-dimensional case K.-H. Hoffmann ; V. N. Starovoitov |
title_fullStr | On a motion of a solid body in a viscous fluid two-dimensional case K.-H. Hoffmann ; V. N. Starovoitov |
title_full_unstemmed | On a motion of a solid body in a viscous fluid two-dimensional case K.-H. Hoffmann ; V. N. Starovoitov |
title_short | On a motion of a solid body in a viscous fluid |
title_sort | on a motion of a solid body in a viscous fluid two dimensional case |
title_sub | two-dimensional case |
topic | Boundary value problems Fluid mechanics Navier-Stokes equations Numerical analysis |
topic_facet | Boundary value problems Fluid mechanics Navier-Stokes equations Numerical analysis |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT hoffmannkarlheinz onamotionofasolidbodyinaviscousfluidtwodimensionalcase AT starovojtovviktorn onamotionofasolidbodyinaviscousfluidtwodimensionalcase |