Set theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon
Springer
1997
|
Ausgabe: | 2., corr. ed. |
Schriftenreihe: | Perspectives in mathematical logic
|
Schlagworte: | |
Beschreibung: | Literaturverz. S. 596 - 610 |
Beschreibung: | XIV, 634 S. graph. Darst. |
ISBN: | 3540630481 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011358072 | ||
003 | DE-604 | ||
005 | 20200430 | ||
007 | t | ||
008 | 970521s1997 gw d||| |||| 00||| ger d | ||
016 | 7 | |a 950377945 |2 DE-101 | |
020 | |a 3540630481 |c Pp. : DM 168.00 |9 3-540-63048-1 | ||
035 | |a (OCoLC)37004402 | ||
035 | |a (DE-599)BVBBV011358072 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-634 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA248.J42 1997 | |
082 | 0 | |a 511.3/22 |2 21 | |
082 | 0 | |a 511.3/22 21 | |
084 | |a SK 155 |0 (DE-625)143219: |2 rvk | ||
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
084 | |a 27 |2 sdnb | ||
100 | 1 | |a Jech, Thomas J. |d 1944- |e Verfasser |0 (DE-588)107482673 |4 aut | |
245 | 1 | 0 | |a Set theory |c Thomas Jech |
250 | |a 2., corr. ed. | ||
264 | 1 | |a Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon |b Springer |c 1997 | |
300 | |a XIV, 634 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Perspectives in mathematical logic | |
500 | |a Literaturverz. S. 596 - 610 | ||
650 | 7 | |a Axiome Martin |2 Jussieu | |
650 | 7 | |a Cardinal mesurable |2 Jussieu | |
650 | 7 | |a Ensemble Borel |2 Jussieu | |
650 | 7 | |a Ensemble analytique |2 Jussieu | |
650 | 7 | |a Ensembles, Théorie axiomatique des |2 ram | |
650 | 7 | |a Ensembles, Théorie descriptive des |2 ram | |
650 | 7 | |a Forcing, Théorie des modèles |2 ram | |
650 | 7 | |a Indiscernable Silver |2 Jussieu | |
650 | 7 | |a Modèle Zermelo-Fraenkel |2 Jussieu | |
650 | 7 | |a Modèle générique |2 Jussieu | |
650 | 7 | |a Modèle transitif |2 Jussieu | |
650 | 7 | |a Problème Suslin |2 Jussieu | |
650 | 7 | |a Propriété Baire |2 Jussieu | |
650 | 7 | |a Théorie Bernays-Gödel |2 Jussieu | |
650 | 7 | |a Ultrafiltres (mathématiques) |2 ram | |
650 | 7 | |a Ultrapuissance |2 Jussieu | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Axiomatische Mengenlehre |0 (DE-588)4143743-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007633235 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804125868930367488 |
---|---|
any_adam_object | |
author | Jech, Thomas J. 1944- |
author_GND | (DE-588)107482673 |
author_facet | Jech, Thomas J. 1944- |
author_role | aut |
author_sort | Jech, Thomas J. 1944- |
author_variant | t j j tj tjj |
building | Verbundindex |
bvnumber | BV011358072 |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248.J42 1997 |
callnumber-search | QA248.J42 1997 |
callnumber-sort | QA 3248 J42 41997 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 155 SK 150 |
ctrlnum | (OCoLC)37004402 (DE-599)BVBBV011358072 |
dewey-full | 511.3/22 511.3/2221 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 511.3/22 21 |
dewey-search | 511.3/22 511.3/22 21 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2., corr. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02343nam a2200673 c 4500</leader><controlfield tag="001">BV011358072</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200430 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970521s1997 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">950377945</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540630481</subfield><subfield code="c">Pp. : DM 168.00</subfield><subfield code="9">3-540-63048-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37004402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011358072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA248.J42 1997</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22 21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="0">(DE-625)143219:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jech, Thomas J.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107482673</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory</subfield><subfield code="c">Thomas Jech</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., corr. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 634 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in mathematical logic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 596 - 610</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Axiome Martin</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cardinal mesurable</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensemble Borel</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensemble analytique</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensembles, Théorie axiomatique des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensembles, Théorie descriptive des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forcing, Théorie des modèles</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Indiscernable Silver</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèle Zermelo-Fraenkel</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèle générique</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modèle transitif</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problème Suslin</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Propriété Baire</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie Bernays-Gödel</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ultrafiltres (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ultrapuissance</subfield><subfield code="2">Jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Axiomatische Mengenlehre</subfield><subfield code="0">(DE-588)4143743-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007633235</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV011358072 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:08:24Z |
institution | BVB |
isbn | 3540630481 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007633235 |
oclc_num | 37004402 |
open_access_boolean | |
owner | DE-20 DE-634 DE-83 DE-11 DE-188 |
owner_facet | DE-20 DE-634 DE-83 DE-11 DE-188 |
physical | XIV, 634 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
series2 | Perspectives in mathematical logic |
spelling | Jech, Thomas J. 1944- Verfasser (DE-588)107482673 aut Set theory Thomas Jech 2., corr. ed. Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kon Springer 1997 XIV, 634 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Perspectives in mathematical logic Literaturverz. S. 596 - 610 Axiome Martin Jussieu Cardinal mesurable Jussieu Ensemble Borel Jussieu Ensemble analytique Jussieu Ensembles, Théorie axiomatique des ram Ensembles, Théorie descriptive des ram Forcing, Théorie des modèles ram Indiscernable Silver Jussieu Modèle Zermelo-Fraenkel Jussieu Modèle générique Jussieu Modèle transitif Jussieu Problème Suslin Jussieu Propriété Baire Jussieu Théorie Bernays-Gödel Jussieu Ultrafiltres (mathématiques) ram Ultrapuissance Jussieu Set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Mengenlehre (DE-588)4074715-3 s DE-604 Axiomatische Mengenlehre (DE-588)4143743-3 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jech, Thomas J. 1944- Set theory Axiome Martin Jussieu Cardinal mesurable Jussieu Ensemble Borel Jussieu Ensemble analytique Jussieu Ensembles, Théorie axiomatique des ram Ensembles, Théorie descriptive des ram Forcing, Théorie des modèles ram Indiscernable Silver Jussieu Modèle Zermelo-Fraenkel Jussieu Modèle générique Jussieu Modèle transitif Jussieu Problème Suslin Jussieu Propriété Baire Jussieu Théorie Bernays-Gödel Jussieu Ultrafiltres (mathématiques) ram Ultrapuissance Jussieu Set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4143743-3 (DE-588)4074715-3 |
title | Set theory |
title_auth | Set theory |
title_exact_search | Set theory |
title_full | Set theory Thomas Jech |
title_fullStr | Set theory Thomas Jech |
title_full_unstemmed | Set theory Thomas Jech |
title_short | Set theory |
title_sort | set theory |
topic | Axiome Martin Jussieu Cardinal mesurable Jussieu Ensemble Borel Jussieu Ensemble analytique Jussieu Ensembles, Théorie axiomatique des ram Ensembles, Théorie descriptive des ram Forcing, Théorie des modèles ram Indiscernable Silver Jussieu Modèle Zermelo-Fraenkel Jussieu Modèle générique Jussieu Modèle transitif Jussieu Problème Suslin Jussieu Propriété Baire Jussieu Théorie Bernays-Gödel Jussieu Ultrafiltres (mathématiques) ram Ultrapuissance Jussieu Set theory Axiomatische Mengenlehre (DE-588)4143743-3 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Axiome Martin Cardinal mesurable Ensemble Borel Ensemble analytique Ensembles, Théorie axiomatique des Ensembles, Théorie descriptive des Forcing, Théorie des modèles Indiscernable Silver Modèle Zermelo-Fraenkel Modèle générique Modèle transitif Problème Suslin Propriété Baire Théorie Bernays-Gödel Ultrafiltres (mathématiques) Ultrapuissance Set theory Axiomatische Mengenlehre Mengenlehre |
work_keys_str_mv | AT jechthomasj settheory |