Complexity and uniformity of elimination in Presburger arithmetic:
Abstract: "The decision complexity of Presburger Arithmetic PA and its variants has received much attention in the literature. We investigate the complexity of quantifier elimination procedures for PA -- a topic that is even more relevant for applications. First we show that the the [sic] autho...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
1997
|
Schriftenreihe: | MIP / Universität Passau, Fakultät für Mathematik und Informatik
1997,03 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The decision complexity of Presburger Arithmetic PA and its variants has received much attention in the literature. We investigate the complexity of quantifier elimination procedures for PA -- a topic that is even more relevant for applications. First we show that the the [sic] author's triply exponential upper bound is essentially tight. This fact seems to preclude practical applications. By weakening the concept of quantifier elimination slightly to bounded quantifier elimination, we show, however, that the upper and lower bound for quantifier elimination in PA can be lowered by exactly one exponential. Moreover we gain uniformity in the coefficients, a property that we prove to be impossible for complete quantifier elimination in PA. Thus we have tight upper and lower complexity bounds for elimination theory in PA and uniform PA. The results are inspired by experimental implementations of bounded quantifier elimination that have solved non-trivial application problems e.g. in parametric integer programming." |
Beschreibung: | 13, 5 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011221929 | ||
003 | DE-604 | ||
005 | 20140217 | ||
007 | t | ||
008 | 970226s1997 |||| 00||| eng d | ||
035 | |a (OCoLC)38179100 | ||
035 | |a (DE-599)BVBBV011221929 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-634 | ||
084 | |a SS 5600 |0 (DE-625)143571: |2 rvk | ||
100 | 1 | |a Weispfenning, Volker |d 1944- |e Verfasser |0 (DE-588)108063550 |4 aut | |
245 | 1 | 0 | |a Complexity and uniformity of elimination in Presburger arithmetic |c Volker Weispfenning |
264 | 1 | |a Passau |c 1997 | |
300 | |a 13, 5 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a MIP / Universität Passau, Fakultät für Mathematik und Informatik |v 1997,03 | |
520 | 3 | |a Abstract: "The decision complexity of Presburger Arithmetic PA and its variants has received much attention in the literature. We investigate the complexity of quantifier elimination procedures for PA -- a topic that is even more relevant for applications. First we show that the the [sic] author's triply exponential upper bound is essentially tight. This fact seems to preclude practical applications. By weakening the concept of quantifier elimination slightly to bounded quantifier elimination, we show, however, that the upper and lower bound for quantifier elimination in PA can be lowered by exactly one exponential. Moreover we gain uniformity in the coefficients, a property that we prove to be impossible for complete quantifier elimination in PA. Thus we have tight upper and lower complexity bounds for elimination theory in PA and uniform PA. The results are inspired by experimental implementations of bounded quantifier elimination that have solved non-trivial application problems e.g. in parametric integer programming." | |
630 | 0 | 4 | |a REDUCE |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Computer arithmetic | |
650 | 4 | |a Integer programming | |
650 | 0 | 7 | |a Theoretische Informatik |0 (DE-588)4196735-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Theoretische Informatik |0 (DE-588)4196735-5 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Universität Passau, Fakultät für Mathematik und Informatik |t MIP |v 1997,03 |w (DE-604)BV000905393 |9 1997,03 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007529238 |
Datensatz im Suchindex
_version_ | 1804125721018236928 |
---|---|
any_adam_object | |
author | Weispfenning, Volker 1944- |
author_GND | (DE-588)108063550 |
author_facet | Weispfenning, Volker 1944- |
author_role | aut |
author_sort | Weispfenning, Volker 1944- |
author_variant | v w vw |
building | Verbundindex |
bvnumber | BV011221929 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)38179100 (DE-599)BVBBV011221929 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02548nam a2200421 cb4500</leader><controlfield tag="001">BV011221929</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970226s1997 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38179100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011221929</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 5600</subfield><subfield code="0">(DE-625)143571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weispfenning, Volker</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108063550</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complexity and uniformity of elimination in Presburger arithmetic</subfield><subfield code="c">Volker Weispfenning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13, 5 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MIP / Universität Passau, Fakultät für Mathematik und Informatik</subfield><subfield code="v">1997,03</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The decision complexity of Presburger Arithmetic PA and its variants has received much attention in the literature. We investigate the complexity of quantifier elimination procedures for PA -- a topic that is even more relevant for applications. First we show that the the [sic] author's triply exponential upper bound is essentially tight. This fact seems to preclude practical applications. By weakening the concept of quantifier elimination slightly to bounded quantifier elimination, we show, however, that the upper and lower bound for quantifier elimination in PA can be lowered by exactly one exponential. Moreover we gain uniformity in the coefficients, a property that we prove to be impossible for complete quantifier elimination in PA. Thus we have tight upper and lower complexity bounds for elimination theory in PA and uniform PA. The results are inspired by experimental implementations of bounded quantifier elimination that have solved non-trivial application problems e.g. in parametric integer programming."</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">REDUCE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer arithmetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integer programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Universität Passau, Fakultät für Mathematik und Informatik</subfield><subfield code="t">MIP</subfield><subfield code="v">1997,03</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">1997,03</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007529238</subfield></datafield></record></collection> |
id | DE-604.BV011221929 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:06:03Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007529238 |
oclc_num | 38179100 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-634 |
owner_facet | DE-154 DE-739 DE-12 DE-634 |
physical | 13, 5 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
record_format | marc |
series2 | MIP / Universität Passau, Fakultät für Mathematik und Informatik |
spelling | Weispfenning, Volker 1944- Verfasser (DE-588)108063550 aut Complexity and uniformity of elimination in Presburger arithmetic Volker Weispfenning Passau 1997 13, 5 S. txt rdacontent n rdamedia nc rdacarrier MIP / Universität Passau, Fakultät für Mathematik und Informatik 1997,03 Abstract: "The decision complexity of Presburger Arithmetic PA and its variants has received much attention in the literature. We investigate the complexity of quantifier elimination procedures for PA -- a topic that is even more relevant for applications. First we show that the the [sic] author's triply exponential upper bound is essentially tight. This fact seems to preclude practical applications. By weakening the concept of quantifier elimination slightly to bounded quantifier elimination, we show, however, that the upper and lower bound for quantifier elimination in PA can be lowered by exactly one exponential. Moreover we gain uniformity in the coefficients, a property that we prove to be impossible for complete quantifier elimination in PA. Thus we have tight upper and lower complexity bounds for elimination theory in PA and uniform PA. The results are inspired by experimental implementations of bounded quantifier elimination that have solved non-trivial application problems e.g. in parametric integer programming." REDUCE Computational complexity Computer arithmetic Integer programming Theoretische Informatik (DE-588)4196735-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Theoretische Informatik (DE-588)4196735-5 s Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 Universität Passau, Fakultät für Mathematik und Informatik MIP 1997,03 (DE-604)BV000905393 1997,03 |
spellingShingle | Weispfenning, Volker 1944- Complexity and uniformity of elimination in Presburger arithmetic REDUCE Computational complexity Computer arithmetic Integer programming Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4196735-5 (DE-588)4026894-9 (DE-588)4037944-9 |
title | Complexity and uniformity of elimination in Presburger arithmetic |
title_auth | Complexity and uniformity of elimination in Presburger arithmetic |
title_exact_search | Complexity and uniformity of elimination in Presburger arithmetic |
title_full | Complexity and uniformity of elimination in Presburger arithmetic Volker Weispfenning |
title_fullStr | Complexity and uniformity of elimination in Presburger arithmetic Volker Weispfenning |
title_full_unstemmed | Complexity and uniformity of elimination in Presburger arithmetic Volker Weispfenning |
title_short | Complexity and uniformity of elimination in Presburger arithmetic |
title_sort | complexity and uniformity of elimination in presburger arithmetic |
topic | REDUCE Computational complexity Computer arithmetic Integer programming Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | REDUCE Computational complexity Computer arithmetic Integer programming Theoretische Informatik Informatik Mathematik |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT weispfenningvolker complexityanduniformityofeliminationinpresburgerarithmetic |