Analysis, manifolds and physics: 1 Basics
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
North-Holland
1996
|
Ausgabe: | Rev. ed., reprint. with minor corr. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 630 S. graph. Darst. |
ISBN: | 0444860177 9780444860170 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV011161747 | ||
003 | DE-604 | ||
005 | 20140625 | ||
007 | t | ||
008 | 970122s1996 d||| |||| 00||| eng d | ||
020 | |a 0444860177 |9 0-444-86017-7 | ||
020 | |a 9780444860170 |9 978-0-444-86017-0 | ||
035 | |a (OCoLC)312255098 | ||
035 | |a (DE-599)BVBBV011161747 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-898 |a DE-355 |a DE-19 |a DE-20 |a DE-11 |a DE-29T |a DE-703 | ||
100 | 1 | |a Choquet-Bruhat, Yvonne |d 1923- |e Verfasser |0 (DE-588)128916206 |4 aut | |
245 | 1 | 0 | |a Analysis, manifolds and physics |n 1 |p Basics |c by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette |
250 | |a Rev. ed., reprint. with minor corr. | ||
264 | 1 | |a Amsterdam [u.a.] |b North-Holland |c 1996 | |
300 | |a XX, 630 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a DeWitt-Morette, Cécile |d 1922-2017 |e Verfasser |0 (DE-588)141948361 |4 aut | |
773 | 0 | 8 | |w (DE-604)BV004271058 |g 1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007481900&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007481900 |
Datensatz im Suchindex
_version_ | 1804125654820585472 |
---|---|
adam_text | CONTENTS
I,
Review
oř
Fundamental
Notions of Analysis
1
A. Set Theory, Definitions
1
1.
Sets
1
2.
Mappings
2
3.
Relations
5
4.
Orderings
5
B.
Aigebraic Structures, Definitions
6
1.
Groups
7
2.
Rings
8
3.
Modules
8
4.
Algebras
9
5.
Linear spaces
9
С
Topology
11
1.
Definitions
11
2.
Separation
13
3.
Base
14
4.
Convergence
14
5.
Covering and compactness
15
6.
Connectedness
16
7.
Continuous mappings
17
8.
Multiple connectedness
19
9.
Associated topologies
20
10.
Topology related to other structures
21
11.
Metric spaces
23
metric spaces
23
Cauchy sequence; completeness
25
12.
Banach spaces
26
normed vector spaces
27
Banach spaces
28
strong and weak topology; compactedness
29
13.
Hubert spaces
30
Đ.
Integration
31
1.
Introduction
32
2.
Measures
33
3.
Measure spaces
34
ix
CONTENTS
4.
Measurable functions
40
5.
Integrable
functions
41
6.
Integration on locally compact spaces
46
7.
Signed and complex measures
49
8.
Integration of vector valued functions
50
9.
V space
52
10.
L space
53
E. Key Theorems in Linear Functional Analysis
57
1.
Bounded linear operators
57
2.
Compact operators
61
3.
Open mapping and closed graph theorems
63
Problems and Exercises
64
Problem
1:
Clifford algebra; Spin(4)
64
Exercise
2:
Product topology
68
Problem
3:
Strong and weak topologies in L1
69
Exercise
4:
Holder spaces
70
See Problem VI
4:
Application to the
Schrödinger
equation
II. Differential Calculus on Banach Spaces
71
A. Foundations
71
1.
Definitions. Taylor expansion
71
2.
Theorems
73
3.
Diffeomorphisms
74
4.
The
Euler
equation
76
5.
The mean value theorem
78
6.
Higher order differentials
79
B. Calculus of Variations
82
1.
Necessary conditions for minima
82
2.
Sufficient conditions
83
3.
Lagrangian problems
86
С
Implicit Function Theorem. Inverse Function Theorem
88
1.
Contracting mapping theorems
88
2.
Inverse function theorem
90
3.
Implicit function theorem
91
4.
Global theorems
92
D. Differential Equations
94
1.
First order differential equation
94
2.
Existence and uniqueness theorems for the lipschitzian
case
95
CONTENTS xi
Problems and
Exercises
98
Problem 1: Banach
spaces, first variation, linearized equation
98
Problem
2:
Taylor expansion of the action; Jacobi fields; the
Feynman-Green function; the Van Vleck matrix;
conjugate points; caustics
100
Problem
3:
Euler-Lagrange equation; the small disturbance
equation; the soap bubble problem; Jacobi fields
105
III. Differentiable Manifolds, Finite Dimensional Case
111
A. Definitions 111
1.
Differentiable manifolds 111
2.
Diffeomorphisms
115
3.
Lie groups
116
B. Vector Fields; Tensor Fields
117
1.
Tangent vector space at a point
117
tangent vector as a derivation
118
tangent vector defined by transformation properties
120
tangent vector as an equivalence class of curves
121
images under differentiable mappings
121
2.
Fibre bundles
124
definition
125
bundle morphisms
127
tangent bundle
127
frame bundle
128
principal fibre bundle
129
3.
Vector fields
132
vector fields
132
moving frames
134
images under diffeomorphisms
134
4.
Covariant vectors; cotangent bundles
135
dual of the tangent space
135
space of differentials
137
cotangent bundle
138
reciprocal images
138
5.
Tensors at a point
138
tensors at a point
138
tensor algebra
140
6.
Tensor bundles; tensor fields
142
С
Groups of Transformations
143
1.
Vector fields as generators of transformation groups
143
2.
Lie derivatives
147
3.
Invariant tensor fields
150
xii CONTENTS
D.
Lie Groups
152
1.
Definitions; notations
152
2.
Left and right translations; Lie algebra; structure constants
155
3.
One-parameter subgroups
158
4.
Exponential mapping; Taylor expansion; canonical coordinates
160
5.
Lie groups of transformations; realization
162
6.
Adjoint representation
166
7.
Canonical form, Maurer-Cartan form
168
Problems and Exercises
169
Problem
1:
Change of coordinates on a fiber bundle,
configuration space, phase space
169
Problem
2:
Lie algebras of Lie groups
172
Problem
3:
The strain tensor
177
Problem
4:
Exponential map; Taylor expansion; adjoint map; loft and
right differentials;
Haar
measure
178
Problem
5:
The group manifolds of SO(3) and SU(2)
181
Problem
6:
The 2-sphere
190
IV. Integration on Manifolds
195
A. Exterior Differential Forms
195
1.
Exterior algebra
195
exterior product
196
local coordinates; strict components
197
change of basis
199
2.
Exterior differentiation
200
3.
Reciprocal image of a form (pull back)
203
4.
Derivations and antiderivations
205
definitions
206
interior product
207
5.
Forms defined on a Lie group
208
invariant forms
208
Maurer-Cartan structure equations
208
6.
Vector valued differential forms
210
B. Integration
212
1.
Integration
212
orientation
212
odd forms
212
integration of
и
-forms
in R
213
partitions of unity
214
properties of integrals
215
2.
Stokes theorem
216
p-chains
217
integrals of p-forms on p-chains
217
boundaries
218
CONTENTS
mappings of chains
219
proof of Stokes theorem
221
3.
Global properties
222
homology and cohomology
222
О
-forms and 0-chains
223
Betti
numbers
224
Poincaré
lemmas
224
de Rham
and
Poincaré
duality theorems
226
С
Exterior Differential Systems
229
1.
Exterior equations
229
2.
Single exterior equation
229
3.
Systems of exterior equations
232
ideal generated by a system of exterior equations
232
algebraic equivalence
232
solutions
233
examples
235
4.
Exterior differential equations
236
integral manifolds
236
associated Pfaff systems
237
generic points
238
closure
238
5.
Mappings of manifolds
239
introduction
239
immersion
241
embedding
241
submersion
242
6.
Pfaff systems
242
complete integrability
243
Frobenius theorem
243
integrability criterion
245
examples
246
dual form of the Frobenius theorem
248
7.
Characteristic system
250
characteristic manifold
250
example: first order partial differential equations
250
complete integrability
253
construction of integral manifolds
254
Cauchy problem
256
examples
259
8.
Invariants
261
invariant with respect to a Pfaff system
261
integral invariants
263
9.
Example: Integral invariants of classical dynamics
265
Liouville theorem
266
canonical transformations
267
xiv CONTENTS
10.
Symplectic structures
and hamiltonian systems
267
Problems
and Exercises
270
Problem
1:
Compound matrices
270
Problem
2:
Poincaré
lemma, Maxwell equations,
wormholes
271
Problem
3:
Integral manifolds
271
Problem
4:
First order partial differential equations, Hamilton-Jacobi
equations, lagrangian manifolds
272
Problem
5:
First order partial differential equations, catastrophes
277
Problem
6:
Darboux theorem
281
Problem
7:
Time dependent hamiltonians
283
See Problem VI
11
paragraph c: Electromagnetic shock waves
V. Riemannian Manifolds.
Kählerian
Manifolds
285
A. The Riemannian Structure
285
1.
Preliminaries
285
metric tensor
285
hyperbolic manifold
287
2.
Geometry of submanifolds, induced metric
290
3.
Existence of a riemannian structure
292
proper structure
292
hyperbolic structure
293
Euler-Poincaré
characteristic
293
4.
Volume element. The star operator
294
volume element
294
star operator
295
5.
Isometries
298
B. Linear Connections
300
1.
Linear connections
300
covariant derivative
301
connection forms
301
parallel translation
302
affine
geodesic
302
torsion and curvature
305
2.
Riemannian connection
308
definitions
309
locally flat manifolds
310
3.
Second fundamental form
312
4.
Differential operators
316
exterior derivative
316
operator
б
317
divergence
317
laplacian
318
CONTENTS
xv
C.
Geodesies
320
1.
Arc length
320
2.
Variations
321
Euler
equations
323
energy integral
324
3.
Exponential mapping
325
definition
325
normal coordinates
326
4.
Geodesies on a proper riemannian manifold
327
properties
327
geodesic completeness
330
5.
Geodesies on a hyperbolic manifold
330
D. Almost Complex and
Kăhlerian
Manifolds
330
Problems and Exercises
336
Problem
1:
Maxwell equation; gravitational radiation
336
Problem
2:
The
Schwarzschild
solution
341
Problem
3:
Geodetic motion; equation of geodetic deviation;
exponentiation; conjugate points
344
Problem
4:
Causal structures;
conformai
spaces; Weyl tensor
350
Vbis. Connections on a Principal Fibre Bundle
A. Connections on a Principal Fibre Bundle
357
1.
Definitions
357
2.
Local connection 1-forms on the base manifold
362
existence theorems
362
section canonically associated with a trivialization
363
potentials
364
change of trivialization
364
examples
366
3.
Covariant derivative
367
associated bundles
367
parallel transport
369
covariant derivative
370
examples
371
4.
Curvature
372
definitions
372
Cartan structural equation
373
local curvature on the base manifold
374
field strength
375
Bianchi
identities
375
5.
Linear connections
376
definition
376
soldering form, torsion form
376
xvi
CONTENTS
torsion structural
equation
376
standard horizontal
(basic) vector field
378
curvature and torsion on the base manifold
378
bundle homomorphism
380
metric connection
381
B. Holonomy
381
1.
Reduction
381
2.
Holonomy groups
386
C. Characteristic Classes and Invariant Curvature Integrals
390
1.
Characteristic classes
390
2.
Gauss-Bonnet theorem and Chern numbers
395
3.
The Atiyah-Singer index theorem
396
Problems and Exercises
401
Problem
1:
The geometry of gauge fields
401
Problem
2:
Charge quantization.
Monopoles
408
Problem
3:
Instanton
solution of euclidean SU(2) Yang-Mills
theory (connection on a non-trivial SU(2) bundle
over S4) 411
Problem
4:
Spin structure; spinors; spin connections
^15
VI. Distributions
423
A. Test Functions
423
1.
Seminorms
423
definitions
423
Hahn-Banach theorem
424
topology defined by a family of seminorms
424
2.
Si-spaces
427
definitions
427
inductive limit topology
429
convergence in 3)m(U) and B(U)
430
examples of functions in
2) 431
truncating sequences
434
density theorem
434
B. Distributions
435
1.
Definitions
435
distributions
435
measures; Dirac measures and Leray forms
437
distribution of order
ρ
439
support of a distribution
441
distributions with compact support
441
CONTENTS xvii
2.
Operations on distributions
444
sum
444
product by C function
444
direct product
445
derivations
446
examples
447
inverse derivative
450
3.
Topology on
Э
453
weak star topology
453
criterion of convergence
454
4.
Change of variables in R
456
change of variables in R
456
transformation of a distribution under a diffeomorphism
457
invariance
459
5.
Convolution
459
convolution algebra
L OR )
459
convolution algebra 2) + and @ ~
462
derivation and translation of a convolution product
464
regularization
465
support of a convolution
465
equations of convolution
466
differential equation with constant coefficients
469
systems of convolution equations
470
kernels
471
6.
Fourier transform
474
Fourier transform of
integrable
functions
474
tempered distributions
476
Fourier transform of tempered distributions
476
Paley-Wiener theorem
477
Fourier transform of a convolution
478
7.
Distribution on a C paracompact manifold
480
8.
Tensor distributions
482
С
Sobolev Spaces and Partial Differential Equations
486
1.
Sobolev spaces
486
properties
487
density theorems
488
W/ spaces
489
Fourier transform
490
Plancherel theorem
490
Sobolev s inequalities
491
2.
Partial differential equations
492
definitions
492
Cauchy-Kovalevski theorem
493
classifications
494
3.
Elliptic equations; laplacians
495
CONTENTS
elementary
solution
of Laplace s equation
495
subharmonic distributions
496
potentials
496
energy integral, Green s formula, unicity theorem
499
Liouville s theorem
500
boundary-value problems
502
Green function
503
introduction to hilbertian methods; generalized
Dirichlet problem
505
hilbertian methods
507
example: Neumann problem
509
4.
Parabolic equations
510
heat diffusion
510
5.
Hyperbolic equation; wave equations
511
elementary solution of the wave equation
511
Cauchy problem
512
energy integral, unicity theorem
513
existence theorem
515
6.
Leray theory of hyperbolic systems
516
7.
Second order systems; propagators
522
Problems and Exercises
525
Problem
1:
Bounded distributions
525
Problem
2:
Laplacian of a discontinuous function
527
Exercise
3:
Regularized functions
528
Problem
4:
Application to the
Schrödinger
equation
528
Exercise
5:
Convolution and linear continuous responses
530
Problem
6:
Fourier transforms of exp(-x2) and
exp
(ix2) 531
Problem
7:
Fourier transforms of Heaviside functions and Pv(l/x)
532
Problem
8:
Dirac
bitensors
533
Problem
9:
Legendre condition
533
Problem
10:
Hyperbolic equations; characteristics
534
Problem
11:
Electromagnetic shock waves
535
Problem
12:
Elementary solution of the wave equation
538
Problem
13:
Elementary kernels of the harmonic oscillator 538
VII. Differentiable
Manifolds, Infinite Dimensional Case
543
A. Infinite-Dimensional Manifolds
543
1.
Definitions and general properties
543
E-manifolds
543
diflerentiable functions
544
tangent vector
544
vector and tensor field
545
differential of a mapping
546
CONTENTS
xix
submanifold
547
immersion,
embedding,
submersion
549
flow of a vector field
551
differential forms
551
2.
Symplectic structures and hamiltonian systems
552
definitions
552
complex structures
552
canonical symplectic form
554
symplectic transformation
554
hamiltonian vector field
554
conservation of energy theorem
555
riemannian manifolds
555
B. Theory of Degree; Leray-Schauder Theory
556
1.
Definition for finite dimensional manifolds
557
degree
557
integral formula for the degree of a function
558
continuous mappings
560
2.
Properties and applications
561
fundamental theorem
561
Borsuk s theorem
562
Brouwer s fixed point theorem
562
product theorem
563
3.
Leray-Schauder theory
563
definitions
563
compact mappings
564
degree of a compact mapping
564
Schauder
fixed point theorem
565
Leray-Schauder theorem
565
С
Morse Theory
567
1.
Introduction
567
2.
Definitions and theorems
567
3.
Index of a critical point
571
4.
Critical neck theorem
572
D. Cylindrical Measures, Wiener Integral
573
1.
Introduction
573
2.
Promeasures and measures on a locally convex space
575
projective
system
575
promeasures
576
image of a promeasure
578
integration with respect to a promeasure of a cylindrical
function
578
Fourier transforms
579
3.
Gaussian promeasures
581
xx CONTENTS
gaussian
measures on
R
581
gaussian promeasures
582
gaussian
promeasures on Hubert spaces
583
4.
The Wiener measure
583
Wiener integral
586
sequential Wiener integral
587
Problems and Exercises
589
Problem A: The Klein-Gordon equation
589
Problem B: Application of the Leray-Schauder theorem
591
Problem Cl: The
Reeb
theorem
592
Problem C2: The method of stationary phase
593
Problem
DI: A
metric on the space of paths with fixed end points
596
Problem D2: Measures invariant under translation
597
Problem D3: Cylindrical
σ
-field
of Cfta, b])
597
Problem D4: Generalized Wiener integral of a cylindrical function
598
References
603
Symbols
611
Index
617
CONTENTS
TO
PART
Π:
92
APPLICATIONS
Preface
ν
Contents
vii
Conventions
xi
I. REVIEW OF FUNDAMENTAL NOTIONS
OF ANALYSIS
1
1.
Graded algebras
1
2.
Berezinian
3
3.
Tensor product of algebras
5
4.
Clifford algebras
6
5.
Clifford algebra as a coset of the tensor algebra
. 14
6.
Fierz identity
15
7.
Pin and Spin groups
17
8.
Weyl spinors,
helicity
operator;
Majorána
pinors,
charge conjugation
27
9.
Representations of
Spin(n,
m), n + m
odd
33
10.
Dirac adjoint
36
11.
Lie algebra of Pin(n, m) and Spin(n, m)
37
12.
Compact spaces
39
13!
Compactness in weak star topology
40
14.
Homotopy groups, general properties
42
15.
Homotopy of topological groups
46
16.
Spectrum of closed and self-adjoint linear operators
47
II. DIFFERENTIAL CALCULUS ON BANACH
SPACES
51
1.
Supersmooth mappings
51
2.
Berezin integration; Gaussian integrals
57
3.
Noether s theorems I
64
4.
Noether s theorems II
71
5.
Invariance
of the equations of motion
79
CONTENTS
6.
String action
82
7.
Stress-energy tensor; energy with respect to a timelike
vector field
83
III. DIFFERENTIABLE MANIFOLDS
91
1.
Sheaves
91
2.
Differentiable submanifolds
91
3.
Subgroups of Lie groups. When are they Lie sub¬
groups?
92
4.
Cartan-Killing form on the Lie algebra
s
of a Lie
group
G
93
5.
Direct and semidirect products of Lie groups and their
Lie algebra
95
6.
Homomorphisms and antihomomorphisms of a Lie
algebra into spaces of vector fields
102
7.
Homogeneous spaces; symmetric spaces
103
8.
Examples of homogeneous spaces,
Stiefel
and Grass-
mann manifolds
108
9.
Abelian representations of nonabelian groups
110
10.
Irreducibility and reducibility 111
11.
Characters
114
12.
Solvable Lie groups
114
13.
Lie algebras of linear groups
115
14.
Graded bundles
118
IV. INTEGRATION ON MANIFOLDS
127
1.
Cohomology. Definitions and exercises
127
2.
Obstruction to the construction of Spin and Pin bun¬
dles;
Stiefel-Whitney
classes
134
3.
Inequivalent spin structures
150
4.
Cohomology of groups
158
5.
Lifting a group action
161
6.
Short exact sequence;
Weyl Heisenberg
group
163
7.
Cohomology of Lie algebras
167
8.
Quasi-linear first-order partial differential equation
171
9.
Exterior differential systems (contributed by B. Kent
Harrison)
173
10.
Bäcklund
transformations for evolution equations (con¬
tributed by N.H. Ibragimov)
181
11.
Poisson
manifolds I
184
CONTENTS
12.
Poisson
manifolds II (contributed by C. Moreno)
200
13.
Completely
integrable
systems (contributed by
С
Moreno)
219
V. RIEMANNIAN MANIFOLDS.
KÄHLERIAN
MANIFOLDS
235
1.
Necessary and sufficient conditions for Lorentzian sig¬
nature
235
2.
First fundamental form (induced metric)
238
3.
Kilting vector fields
239
4.
Sphère S
240
5.
Curvature of Einstein cylinder
244
6.
Conformai
transformation of Yang-Mills, Dirac and
Higgs operators in
d
dimensions
244
7.
Conformai
system for Einstein equations
249
8.
Conformai
transformation of nonlinear wave equations
256
9.
Masses of homothetic space-time
262
10.
Invariant geometries on the squashed seven spheres
263
11.
Harmonic maps
274
12.
Composition of maps
281
13.
Kaluza-Klein theories
286
14. Kahler
manifolds; Calabi-Yau spaces
294
V BIS. CONNECTIONS ON A PRINCIPAL FIBRE
BUNDLE
303
1.
An explicit proof of the existence of infinitely many
connections on a principal bundle with paracompact
base
303
2.
Gauge transformations
305
3. Hopf fibering
S3-*S2
307
4.
Subbundles and reducible bundles
308
5.
Broken symmetry and bundle reduction, Higgs mech¬
anism
310
6.
The
Euler-Poincaré
characteristic
321
7.
Equivalent bundles
334
8.
Universal bundles. Bundle classification
335
9.
Generalized
Bianchi
identity
340
10.
Chem-Simons classes
340
11.
Cocycles on the Lie algebra of a gauge group;
Anomalies
349
CONTENTS
12. Virasoro
representation of
S£(Diñ S1).
Ghosts.
BRST
operator
363
VI. DISTRIBUTIONS
373
1.
Elementary solution of the wave equation in
eř-dimen-
sional spacetime
373
2.
Sobolev embedding theorem
377
3.
Multiplication properties of Sobolev spaces
386
4.
The best possible constant for a Sobolev inequality on
W,n>3 (contributed by H.
Grosse)
389
5.
Hardy-Littlewood-Sobolev inequality (contributed by
H.
Grosse)
391
6.
Spaces Hs 8
(IR )
393
7.
Spaces Hs
(Г)
and Hs
„
(Un)
396
8.
Completeness of a ball of Wps in Wf_j
398
9.
Distribution with laplacian in L2(U )
399
10.
Nonlinear wave equation in curved spacetime
400
11.
Harmonic coordinates in general relativity
405
12.
Leray theory of hyperbolic systems. Temporal gauge in
general relativity
407
13.
Einstein equations with sources as a hyperbolic system
413
14.
Distributions and analyticity: Wightman distributions
and
Schwinger
functions (contributed by C. Doering)
414
15.
Bounds on the number of bound states of the
Schröd-
inger operator
425
16.
Sobolev spaces on riemannian manifolds
428
Subject Index
433
Errata to Part I
439
|
any_adam_object | 1 |
author | Choquet-Bruhat, Yvonne 1923- DeWitt-Morette, Cécile 1922-2017 |
author_GND | (DE-588)128916206 (DE-588)141948361 |
author_facet | Choquet-Bruhat, Yvonne 1923- DeWitt-Morette, Cécile 1922-2017 |
author_role | aut aut |
author_sort | Choquet-Bruhat, Yvonne 1923- |
author_variant | y c b ycb c d m cdm |
building | Verbundindex |
bvnumber | BV011161747 |
ctrlnum | (OCoLC)312255098 (DE-599)BVBBV011161747 |
edition | Rev. ed., reprint. with minor corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01324nam a2200313 cc4500</leader><controlfield tag="001">BV011161747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140625 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970122s1996 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444860177</subfield><subfield code="9">0-444-86017-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444860170</subfield><subfield code="9">978-0-444-86017-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)312255098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011161747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choquet-Bruhat, Yvonne</subfield><subfield code="d">1923-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128916206</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis, manifolds and physics</subfield><subfield code="n">1</subfield><subfield code="p">Basics</subfield><subfield code="c">by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. ed., reprint. with minor corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 630 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeWitt-Morette, Cécile</subfield><subfield code="d">1922-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141948361</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV004271058</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007481900&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007481900</subfield></datafield></record></collection> |
id | DE-604.BV011161747 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:05:00Z |
institution | BVB |
isbn | 0444860177 9780444860170 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007481900 |
oclc_num | 312255098 |
open_access_boolean | |
owner | DE-1050 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-11 DE-29T DE-703 |
owner_facet | DE-1050 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-11 DE-29T DE-703 |
physical | XX, 630 S. graph. Darst. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | North-Holland |
record_format | marc |
spelling | Choquet-Bruhat, Yvonne 1923- Verfasser (DE-588)128916206 aut Analysis, manifolds and physics 1 Basics by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette Rev. ed., reprint. with minor corr. Amsterdam [u.a.] North-Holland 1996 XX, 630 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier DeWitt-Morette, Cécile 1922-2017 Verfasser (DE-588)141948361 aut (DE-604)BV004271058 1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007481900&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Choquet-Bruhat, Yvonne 1923- DeWitt-Morette, Cécile 1922-2017 Analysis, manifolds and physics |
title | Analysis, manifolds and physics |
title_auth | Analysis, manifolds and physics |
title_exact_search | Analysis, manifolds and physics |
title_full | Analysis, manifolds and physics 1 Basics by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette |
title_fullStr | Analysis, manifolds and physics 1 Basics by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette |
title_full_unstemmed | Analysis, manifolds and physics 1 Basics by Yvonne Choquet-Bruhat, Cécile DeWitt-Morette |
title_short | Analysis, manifolds and physics |
title_sort | analysis manifolds and physics basics |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007481900&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004271058 |
work_keys_str_mv | AT choquetbruhatyvonne analysismanifoldsandphysics1 AT dewittmorettececile analysismanifoldsandphysics1 |