Generalized ultrametric spaces: completion, topology, and powerdomains via the Yoneda embedding

Abstract: "Generalized ultrametric spaces are a common generalization of preorders and ordinary ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere's (1973) enriched-categorical and Smyth' [sic] (1987, 1991) topological view on generalized (ultra)metric spaces, it is sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonsangue, Marcello M. (VerfasserIn), Breugel, Franck van (VerfasserIn), Rutten, Jan J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam 1995
Schriftenreihe:Centrum voor Wiskunde en Informatica <Amsterdam> / Department of Computer Science: Report CS 95,60
Schlagworte:
Zusammenfassung:Abstract: "Generalized ultrametric spaces are a common generalization of preorders and ordinary ultrametric spaces (Lawvere 1973, Rutten 1995). Combining Lawvere's (1973) enriched-categorical and Smyth' [sic] (1987, 1991) topological view on generalized (ultra)metric spaces, it is shown how to construct 1. completion, 2. topology, and 3. powerdomains for generalized ultrametric spaces. Restricted to the special cases of preorders and ordinary ultrametric spaces, these constructions yield, respectively: 1. chain completion and Cauchy completion; 2. the Alexandroff and the Scott topology, and the [epsilon]-ball topology; 3. lower, upper, and convex powerdomains, and the powerdomain of compact subsets. Interestingly, all constructions are formulated in terms of (an ultrametric version of) the Yoneda (1954) lemma."
Beschreibung:43 S.