Iteration of Runge Kutta methods with block triangular Jacobians:
Abstract: "We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton iteration employing the full righthand side Ja...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1995
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1995,6 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose blocks themselves are block-triangular matrices. Such a grossly 'simplified' Newton iteration process allows for a considerable amount of parallelism. However, the important issue is whether this block-triangular approach does converge. It is the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian approximations." |
Beschreibung: | 16 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011059627 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 961114s1995 |||| 00||| engod | ||
035 | |a (OCoLC)34740293 | ||
035 | |a (DE-599)BVBBV011059627 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Iteration of Runge Kutta methods with block triangular Jacobians |c P. J. van der Houwen ; B. P. Sommeijer |
264 | 1 | |a Amsterdam |c 1995 | |
300 | |a 16 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1995,6 | |
520 | 3 | |a Abstract: "We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose blocks themselves are block-triangular matrices. Such a grossly 'simplified' Newton iteration process allows for a considerable amount of parallelism. However, the important issue is whether this block-triangular approach does converge. It is the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian approximations." | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1995,6 |w (DE-604)BV010177152 |9 1995,6 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007406884 |
Datensatz im Suchindex
_version_ | 1804125548347129856 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_role | aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh b p s bp bps |
building | Verbundindex |
bvnumber | BV011059627 |
ctrlnum | (OCoLC)34740293 (DE-599)BVBBV011059627 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02391nam a2200337 cb4500</leader><controlfield tag="001">BV011059627</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961114s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34740293</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011059627</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iteration of Runge Kutta methods with block triangular Jacobians</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1995,6</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose blocks themselves are block-triangular matrices. Such a grossly 'simplified' Newton iteration process allows for a considerable amount of parallelism. However, the important issue is whether this block-triangular approach does converge. It is the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian approximations."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1995,6</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1995,6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007406884</subfield></datafield></record></collection> |
id | DE-604.BV011059627 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007406884 |
oclc_num | 34740293 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 16 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Iteration of Runge Kutta methods with block triangular Jacobians P. J. van der Houwen ; B. P. Sommeijer Amsterdam 1995 16 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1995,6 Abstract: "We shall consider iteration processes for solving the implicit relations associated with implicit Runge-Kutta (RK) methods applied to stiff initial value problems (IVPs). The conventional approach for solving the RK equations uses Newton iteration employing the full righthand side Jacobian. For IVPs of large dimension, this approach is not attractive because of the high costs involved in the LU-decomposition of the Jacobian of the RK equations. Several proposals have been made to reduce these high costs. The most well-known remedy is the use of similarity transformations by which the RK Jacobian is transformed to a block-diagonal matrix whose blocks have the IVP dimension. In this paper we study an alternative approach which directly replaces the RK Jacobian by a block-diagonal or block-triangular matrix whose blocks themselves are block-triangular matrices. Such a grossly 'simplified' Newton iteration process allows for a considerable amount of parallelism. However, the important issue is whether this block-triangular approach does converge. It is the aim of this paper to get insight into the effect on the convergence of block-triangular Jacobian approximations." Algorithms Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1995,6 (DE-604)BV010177152 1995,6 |
spellingShingle | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Iteration of Runge Kutta methods with block triangular Jacobians Algorithms Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
title | Iteration of Runge Kutta methods with block triangular Jacobians |
title_auth | Iteration of Runge Kutta methods with block triangular Jacobians |
title_exact_search | Iteration of Runge Kutta methods with block triangular Jacobians |
title_full | Iteration of Runge Kutta methods with block triangular Jacobians P. J. van der Houwen ; B. P. Sommeijer |
title_fullStr | Iteration of Runge Kutta methods with block triangular Jacobians P. J. van der Houwen ; B. P. Sommeijer |
title_full_unstemmed | Iteration of Runge Kutta methods with block triangular Jacobians P. J. van der Houwen ; B. P. Sommeijer |
title_short | Iteration of Runge Kutta methods with block triangular Jacobians |
title_sort | iteration of runge kutta methods with block triangular jacobians |
topic | Algorithms Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
topic_facet | Algorithms Initial value problems Iterative methods (Mathematics) Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander iterationofrungekuttamethodswithblocktriangularjacobians AT sommeijerbenp iterationofrungekuttamethodswithblocktriangularjacobians |