Training PDMS on models: the case of deformable superellipses

Abstract: "This paper addresses the following problem: How can we make a complicated mathematical shape model simpler while keeping a comparable level of representational power? The proposed solution is to use the original model itself -- which represents a class of shapes -- to train a Point D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pilu, Maurizio (VerfasserIn), Fitzgibbon, Andrew W. (VerfasserIn), Fisher, Robert B. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Edinburgh 1996
Schriftenreihe:University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 8189
Schlagworte:
Zusammenfassung:Abstract: "This paper addresses the following problem: How can we make a complicated mathematical shape model simpler while keeping a comparable level of representational power? The proposed solution is to use the original model itself -- which represents a class of shapes -- to train a Point Distribution Model. In this paper the idea is applied to the case of deformable superellipses."
Beschreibung:[10] S.