Local inexact Newton multilevel FEM for nonlinear elliptic problems:
Abstract: "The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's meth...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin-Wilmersdorf
Konrad-Zuse-Zentrum für Informationstechnik
1996
|
Schriftenreihe: | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC
1996,29 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton-Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton-PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton-Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a NEWTON-KASKADE algorithm." |
Beschreibung: | 14 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011030713 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t | ||
008 | 961030s1996 |||| 00||| eng d | ||
035 | |a (OCoLC)37709988 | ||
035 | |a (DE-599)BVBBV011030713 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a SS 4777 |0 (DE-625)143522: |2 rvk | ||
100 | 1 | |a Deuflhard, Peter |d 1944-2019 |e Verfasser |0 (DE-588)108205983 |4 aut | |
245 | 1 | 0 | |a Local inexact Newton multilevel FEM for nonlinear elliptic problems |c Peter Deuflhard ; Martin Weiser |
264 | 1 | |a Berlin-Wilmersdorf |b Konrad-Zuse-Zentrum für Informationstechnik |c 1996 | |
300 | |a 14 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1996,29 | |
520 | 3 | |a Abstract: "The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton-Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton-PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton-Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a NEWTON-KASKADE algorithm." | |
650 | 4 | |a Differential equations |x Numerical solutions | |
650 | 4 | |a Differential equations, Elliptic | |
650 | 4 | |a Newton-Raphson method | |
700 | 1 | |a Weiser, Martin |d 1970- |e Verfasser |0 (DE-588)123252040 |4 aut | |
830 | 0 | |a Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |v 1996,29 |w (DE-604)BV004801715 |9 1996,29 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007386219 |
Datensatz im Suchindex
_version_ | 1804125521136582656 |
---|---|
any_adam_object | |
author | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_GND | (DE-588)108205983 (DE-588)123252040 |
author_facet | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- |
author_role | aut aut |
author_sort | Deuflhard, Peter 1944-2019 |
author_variant | p d pd m w mw |
building | Verbundindex |
bvnumber | BV011030713 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)37709988 (DE-599)BVBBV011030713 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02919nam a2200337 cb4500</leader><controlfield tag="001">BV011030713</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961030s1996 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37709988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011030713</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SS 4777</subfield><subfield code="0">(DE-625)143522:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local inexact Newton multilevel FEM for nonlinear elliptic problems</subfield><subfield code="c">Peter Deuflhard ; Martin Weiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin-Wilmersdorf</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1996,29</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton-Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton-PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton-Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a NEWTON-KASKADE algorithm."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton-Raphson method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiser, Martin</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123252040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC</subfield><subfield code="v">1996,29</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1996,29</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007386219</subfield></datafield></record></collection> |
id | DE-604.BV011030713 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:02:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007386219 |
oclc_num | 37709988 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 14 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
series2 | Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC |
spelling | Deuflhard, Peter 1944-2019 Verfasser (DE-588)108205983 aut Local inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser Berlin-Wilmersdorf Konrad-Zuse-Zentrum für Informationstechnik 1996 14 S. txt rdacontent n rdamedia nc rdacarrier Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1996,29 Abstract: "The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton-Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton-PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton-Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a NEWTON-KASKADE algorithm." Differential equations Numerical solutions Differential equations, Elliptic Newton-Raphson method Weiser, Martin 1970- Verfasser (DE-588)123252040 aut Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC 1996,29 (DE-604)BV004801715 1996,29 |
spellingShingle | Deuflhard, Peter 1944-2019 Weiser, Martin 1970- Local inexact Newton multilevel FEM for nonlinear elliptic problems Konrad-Zuse-Zentrum für Informationstechnik <Berlin>: Preprint SC Differential equations Numerical solutions Differential equations, Elliptic Newton-Raphson method |
title | Local inexact Newton multilevel FEM for nonlinear elliptic problems |
title_auth | Local inexact Newton multilevel FEM for nonlinear elliptic problems |
title_exact_search | Local inexact Newton multilevel FEM for nonlinear elliptic problems |
title_full | Local inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_fullStr | Local inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_full_unstemmed | Local inexact Newton multilevel FEM for nonlinear elliptic problems Peter Deuflhard ; Martin Weiser |
title_short | Local inexact Newton multilevel FEM for nonlinear elliptic problems |
title_sort | local inexact newton multilevel fem for nonlinear elliptic problems |
topic | Differential equations Numerical solutions Differential equations, Elliptic Newton-Raphson method |
topic_facet | Differential equations Numerical solutions Differential equations, Elliptic Newton-Raphson method |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT deuflhardpeter localinexactnewtonmultilevelfemfornonlinearellipticproblems AT weisermartin localinexactnewtonmultilevelfemfornonlinearellipticproblems |