Approximation algorithms for time constrained scheduling:
Abstract: "In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j)[belonging to] (0,1] and an undirected graph G = (J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j, j') [belonging...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
München
1995
|
Schriftenreihe: | Technische Universität <München>: TUM-I
9522 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j)[belonging to] (0,1] and an undirected graph G = (J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j, j') [belonging to] E are assigned to different machines and that the total execution time for each machine is at most 1. The goal is to find a minimum number of machines to execute all jobs under this time constraint. This scheduling problem is a natural generalization of the classical bin packing problem. We propose and analyse several approximation algorithms with constant absolute worst case ratio for graphs that can be colored in polynomial time." |
Beschreibung: | [22] S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010841154 | ||
003 | DE-604 | ||
005 | 20040416 | ||
007 | t | ||
008 | 960701s1995 gw t||| 00||| ger d | ||
016 | 7 | |a 947798927 |2 DE-101 | |
035 | |a (OCoLC)35746884 | ||
035 | |a (DE-599)BVBBV010841154 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM I 9522 | ||
100 | 1 | |a Jansen, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Approximation algorithms for time constrained scheduling |c Klaus Jansen ; Sabine Öhring |
264 | 1 | |a München |c 1995 | |
300 | |a [22] S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-I |v 9522 | |
520 | 3 | |a Abstract: "In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j)[belonging to] (0,1] and an undirected graph G = (J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j, j') [belonging to] E are assigned to different machines and that the total execution time for each machine is at most 1. The goal is to find a minimum number of machines to execute all jobs under this time constraint. This scheduling problem is a natural generalization of the classical bin packing problem. We propose and analyse several approximation algorithms with constant absolute worst case ratio for graphs that can be colored in polynomial time." | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Constraint programming (Computer science) | |
650 | 4 | |a Electronic data processing |x Distributed processing | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Scheduling | |
700 | 1 | |a Öhring, Sabine |e Verfasser |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-I |v 9522 |w (DE-604)BV006185376 |9 9522 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007246845 |
Datensatz im Suchindex
_version_ | 1804125328852910080 |
---|---|
any_adam_object | |
author | Jansen, Klaus Öhring, Sabine |
author_facet | Jansen, Klaus Öhring, Sabine |
author_role | aut aut |
author_sort | Jansen, Klaus |
author_variant | k j kj s ö sö |
building | Verbundindex |
bvnumber | BV010841154 |
ctrlnum | (OCoLC)35746884 (DE-599)BVBBV010841154 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01920nam a2200385 cb4500</leader><controlfield tag="001">BV010841154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040416 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960701s1995 gw t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">947798927</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35746884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010841154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM I 9522</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jansen, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation algorithms for time constrained scheduling</subfield><subfield code="c">Klaus Jansen ; Sabine Öhring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">[22] S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9522</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j)[belonging to] (0,1] and an undirected graph G = (J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j, j') [belonging to] E are assigned to different machines and that the total execution time for each machine is at most 1. The goal is to find a minimum number of machines to execute all jobs under this time constraint. This scheduling problem is a natural generalization of the classical bin packing problem. We propose and analyse several approximation algorithms with constant absolute worst case ratio for graphs that can be colored in polynomial time."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constraint programming (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield><subfield code="x">Distributed processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheduling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Öhring, Sabine</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9522</subfield><subfield code="w">(DE-604)BV006185376</subfield><subfield code="9">9522</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007246845</subfield></datafield></record></collection> |
id | DE-604.BV010841154 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:59:49Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007246845 |
oclc_num | 35746884 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | [22] S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series | Technische Universität <München>: TUM-I |
series2 | Technische Universität <München>: TUM-I |
spelling | Jansen, Klaus Verfasser aut Approximation algorithms for time constrained scheduling Klaus Jansen ; Sabine Öhring München 1995 [22] S. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-I 9522 Abstract: "In this paper we consider the following time constrained scheduling problem. Given a set of jobs J with execution times e(j)[belonging to] (0,1] and an undirected graph G = (J, E), we consider the problem to find a schedule for the jobs such that adjacent jobs (j, j') [belonging to] E are assigned to different machines and that the total execution time for each machine is at most 1. The goal is to find a minimum number of machines to execute all jobs under this time constraint. This scheduling problem is a natural generalization of the classical bin packing problem. We propose and analyse several approximation algorithms with constant absolute worst case ratio for graphs that can be colored in polynomial time." Datenverarbeitung Constraint programming (Computer science) Electronic data processing Distributed processing Graph theory Scheduling Öhring, Sabine Verfasser aut Technische Universität <München>: TUM-I 9522 (DE-604)BV006185376 9522 |
spellingShingle | Jansen, Klaus Öhring, Sabine Approximation algorithms for time constrained scheduling Technische Universität <München>: TUM-I Datenverarbeitung Constraint programming (Computer science) Electronic data processing Distributed processing Graph theory Scheduling |
title | Approximation algorithms for time constrained scheduling |
title_auth | Approximation algorithms for time constrained scheduling |
title_exact_search | Approximation algorithms for time constrained scheduling |
title_full | Approximation algorithms for time constrained scheduling Klaus Jansen ; Sabine Öhring |
title_fullStr | Approximation algorithms for time constrained scheduling Klaus Jansen ; Sabine Öhring |
title_full_unstemmed | Approximation algorithms for time constrained scheduling Klaus Jansen ; Sabine Öhring |
title_short | Approximation algorithms for time constrained scheduling |
title_sort | approximation algorithms for time constrained scheduling |
topic | Datenverarbeitung Constraint programming (Computer science) Electronic data processing Distributed processing Graph theory Scheduling |
topic_facet | Datenverarbeitung Constraint programming (Computer science) Electronic data processing Distributed processing Graph theory Scheduling |
volume_link | (DE-604)BV006185376 |
work_keys_str_mv | AT jansenklaus approximationalgorithmsfortimeconstrainedscheduling AT ohringsabine approximationalgorithmsfortimeconstrainedscheduling |