Automatic characterisation of musical style:
Abstract: 'This paper describes a system for automatically characterising musical style using motifs. Motifs are patterns of rhythms or pitches common to more than one piece of music in a style. The Style Analysis with Motifs (SAM) system uses an original classification technique and is able to...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1993
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
668 |
Schlagworte: | |
Zusammenfassung: | Abstract: 'This paper describes a system for automatically characterising musical style using motifs. Motifs are patterns of rhythms or pitches common to more than one piece of music in a style. The Style Analysis with Motifs (SAM) system uses an original classification technique and is able to learn to distinguish between different styles with a success rate of over 95%. It is suggested that since motifs can be used to automatically discriminate between different styles effectively, they may be very important in the way humans achieve the task." |
Beschreibung: | 15 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010466463 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951108s1993 |||| 00||| engod | ||
035 | |a (OCoLC)32126573 | ||
035 | |a (DE-599)BVBBV010466463 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Westhead, Martin D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Automatic characterisation of musical style |c Martin D. Westhead and Alan Smaill |
264 | 1 | |a Edinburgh |c 1993 | |
300 | |a 15 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 668 | |
520 | 3 | |a Abstract: 'This paper describes a system for automatically characterising musical style using motifs. Motifs are patterns of rhythms or pitches common to more than one piece of music in a style. The Style Analysis with Motifs (SAM) system uses an original classification technique and is able to learn to distinguish between different styles with a success rate of over 95%. It is suggested that since motifs can be used to automatically discriminate between different styles effectively, they may be very important in the way humans achieve the task." | |
650 | 7 | |a Bionics and artificial intelligence |2 sigle | |
650 | 4 | |a Computer music | |
700 | 1 | |a Smaill, Alan |e Verfasser |4 aut | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 668 |w (DE-604)BV010450646 |9 668 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006974440 |
Datensatz im Suchindex
_version_ | 1804124899358277632 |
---|---|
any_adam_object | |
author | Westhead, Martin D. Smaill, Alan |
author_facet | Westhead, Martin D. Smaill, Alan |
author_role | aut aut |
author_sort | Westhead, Martin D. |
author_variant | m d w md mdw a s as |
building | Verbundindex |
bvnumber | BV010466463 |
ctrlnum | (OCoLC)32126573 (DE-599)BVBBV010466463 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01598nam a2200313 cb4500</leader><controlfield tag="001">BV010466463</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951108s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32126573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010466463</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Westhead, Martin D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automatic characterisation of musical style</subfield><subfield code="c">Martin D. Westhead and Alan Smaill</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">668</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: 'This paper describes a system for automatically characterising musical style using motifs. Motifs are patterns of rhythms or pitches common to more than one piece of music in a style. The Style Analysis with Motifs (SAM) system uses an original classification technique and is able to learn to distinguish between different styles with a success rate of over 95%. It is suggested that since motifs can be used to automatically discriminate between different styles effectively, they may be very important in the way humans achieve the task."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionics and artificial intelligence</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer music</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smaill, Alan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">668</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">668</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006974440</subfield></datafield></record></collection> |
id | DE-604.BV010466463 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:53:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006974440 |
oclc_num | 32126573 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 15 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Westhead, Martin D. Verfasser aut Automatic characterisation of musical style Martin D. Westhead and Alan Smaill Edinburgh 1993 15 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 668 Abstract: 'This paper describes a system for automatically characterising musical style using motifs. Motifs are patterns of rhythms or pitches common to more than one piece of music in a style. The Style Analysis with Motifs (SAM) system uses an original classification technique and is able to learn to distinguish between different styles with a success rate of over 95%. It is suggested that since motifs can be used to automatically discriminate between different styles effectively, they may be very important in the way humans achieve the task." Bionics and artificial intelligence sigle Computer music Smaill, Alan Verfasser aut Department of Artificial Intelligence: DAI research paper University <Edinburgh> 668 (DE-604)BV010450646 668 |
spellingShingle | Westhead, Martin D. Smaill, Alan Automatic characterisation of musical style Bionics and artificial intelligence sigle Computer music |
title | Automatic characterisation of musical style |
title_auth | Automatic characterisation of musical style |
title_exact_search | Automatic characterisation of musical style |
title_full | Automatic characterisation of musical style Martin D. Westhead and Alan Smaill |
title_fullStr | Automatic characterisation of musical style Martin D. Westhead and Alan Smaill |
title_full_unstemmed | Automatic characterisation of musical style Martin D. Westhead and Alan Smaill |
title_short | Automatic characterisation of musical style |
title_sort | automatic characterisation of musical style |
topic | Bionics and artificial intelligence sigle Computer music |
topic_facet | Bionics and artificial intelligence Computer music |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT westheadmartind automaticcharacterisationofmusicalstyle AT smaillalan automaticcharacterisationofmusicalstyle |