Incidence calculus:
Abstract: "We describe incidence calculus, a logic for probabilistic reasoning. In incidence calculus, probabilities are not directly associated with formulae. Rather sets of possible worlds are directly associated with formulae and probabilities are calculated from these. This enables incidenc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Edinburgh
1990
|
Schriftenreihe: | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper
497 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We describe incidence calculus, a logic for probabilistic reasoning. In incidence calculus, probabilities are not directly associated with formulae. Rather sets of possible worlds are directly associated with formulae and probabilities are calculated from these. This enables incidence calculus to be truth functional, which a logic based on a purely numeric uncertainty measure cannot be. This, in turn, enables tighter probablity [sic] intervals to be calculated for theorems of an incidence calculus theory than is possible in purely numeric uncertainty theory." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010452596 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 951027s1990 |||| 00||| engod | ||
035 | |a (OCoLC)24437297 | ||
035 | |a (DE-599)BVBBV010452596 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Bundy, Alan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Incidence calculus |
264 | 1 | |a Edinburgh |c 1990 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |v 497 | |
520 | 3 | |a Abstract: "We describe incidence calculus, a logic for probabilistic reasoning. In incidence calculus, probabilities are not directly associated with formulae. Rather sets of possible worlds are directly associated with formulae and probabilities are calculated from these. This enables incidence calculus to be truth functional, which a logic based on a purely numeric uncertainty measure cannot be. This, in turn, enables tighter probablity [sic] intervals to be calculated for theorems of an incidence calculus theory than is possible in purely numeric uncertainty theory." | |
650 | 7 | |a Applied statistics, operational research |2 sigle | |
650 | 7 | |a Bionics and artificial intelligence |2 sigle | |
650 | 7 | |a Mathematics |2 sigle | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Logic | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Reasoning | |
810 | 2 | |a Department of Artificial Intelligence: DAI research paper |t University <Edinburgh> |v 497 |w (DE-604)BV010450646 |9 497 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006965480 |
Datensatz im Suchindex
_version_ | 1804124885841084416 |
---|---|
any_adam_object | |
author | Bundy, Alan |
author_facet | Bundy, Alan |
author_role | aut |
author_sort | Bundy, Alan |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV010452596 |
ctrlnum | (OCoLC)24437297 (DE-599)BVBBV010452596 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01681nam a2200361 cb4500</leader><controlfield tag="001">BV010452596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">951027s1990 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24437297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010452596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bundy, Alan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incidence calculus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Edinburgh</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University <Edinburgh> / Department of Artificial Intelligence: DAI research paper</subfield><subfield code="v">497</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We describe incidence calculus, a logic for probabilistic reasoning. In incidence calculus, probabilities are not directly associated with formulae. Rather sets of possible worlds are directly associated with formulae and probabilities are calculated from these. This enables incidence calculus to be truth functional, which a logic based on a purely numeric uncertainty measure cannot be. This, in turn, enables tighter probablity [sic] intervals to be calculated for theorems of an incidence calculus theory than is possible in purely numeric uncertainty theory."</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Applied statistics, operational research</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bionics and artificial intelligence</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">sigle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reasoning</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Artificial Intelligence: DAI research paper</subfield><subfield code="t">University <Edinburgh></subfield><subfield code="v">497</subfield><subfield code="w">(DE-604)BV010450646</subfield><subfield code="9">497</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006965480</subfield></datafield></record></collection> |
id | DE-604.BV010452596 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:52:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006965480 |
oclc_num | 24437297 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series2 | University <Edinburgh> / Department of Artificial Intelligence: DAI research paper |
spelling | Bundy, Alan Verfasser aut Incidence calculus Edinburgh 1990 10 S. txt rdacontent n rdamedia nc rdacarrier University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 497 Abstract: "We describe incidence calculus, a logic for probabilistic reasoning. In incidence calculus, probabilities are not directly associated with formulae. Rather sets of possible worlds are directly associated with formulae and probabilities are calculated from these. This enables incidence calculus to be truth functional, which a logic based on a purely numeric uncertainty measure cannot be. This, in turn, enables tighter probablity [sic] intervals to be calculated for theorems of an incidence calculus theory than is possible in purely numeric uncertainty theory." Applied statistics, operational research sigle Bionics and artificial intelligence sigle Mathematics sigle Mathematik Logic Probabilities Reasoning Department of Artificial Intelligence: DAI research paper University <Edinburgh> 497 (DE-604)BV010450646 497 |
spellingShingle | Bundy, Alan Incidence calculus Applied statistics, operational research sigle Bionics and artificial intelligence sigle Mathematics sigle Mathematik Logic Probabilities Reasoning |
title | Incidence calculus |
title_auth | Incidence calculus |
title_exact_search | Incidence calculus |
title_full | Incidence calculus |
title_fullStr | Incidence calculus |
title_full_unstemmed | Incidence calculus |
title_short | Incidence calculus |
title_sort | incidence calculus |
topic | Applied statistics, operational research sigle Bionics and artificial intelligence sigle Mathematics sigle Mathematik Logic Probabilities Reasoning |
topic_facet | Applied statistics, operational research Bionics and artificial intelligence Mathematics Mathematik Logic Probabilities Reasoning |
volume_link | (DE-604)BV010450646 |
work_keys_str_mv | AT bundyalan incidencecalculus |