Constructing list homomorphisms:
Abstract: "List homomorphisms are functions which can be efficiently computed in parallel since they ideally suit the divide-and- conquer paradigm. We propose a simple approach to testing whether a function is a homomorphism and, if so, how it can be parallelized. For some interesting functions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Passau
1995
|
Schriftenreihe: | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP
1995,12 |
Schlagworte: | |
Zusammenfassung: | Abstract: "List homomorphisms are functions which can be efficiently computed in parallel since they ideally suit the divide-and- conquer paradigm. We propose a simple approach to testing whether a function is a homomorphism and, if so, how it can be parallelized. For some interesting functions which are not homomorphisms, e.g. the maximum segment sum problem, the methodology provides a systematic way of embedding into a homomorphism. The approach is based on analyzing two inherently sequential representations of the function based on cons- and snoc-lists." |
Beschreibung: | 17 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010381097 | ||
003 | DE-604 | ||
005 | 19990210 | ||
007 | t| | ||
008 | 950912s1995 xx |||| 00||| eng d | ||
035 | |a (OCoLC)35571459 | ||
035 | |a (DE-599)BVBBV010381097 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-154 |a DE-739 |a DE-12 |a DE-384 |a DE-29T |a DE-91G |a DE-634 | ||
100 | 1 | |a Gorlač, Sergej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Constructing list homomorphisms |c Sergei Gorlatch |
264 | 1 | |a Passau |c 1995 | |
300 | |a 17 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |v 1995,12 | |
520 | 3 | |a Abstract: "List homomorphisms are functions which can be efficiently computed in parallel since they ideally suit the divide-and- conquer paradigm. We propose a simple approach to testing whether a function is a homomorphism and, if so, how it can be parallelized. For some interesting functions which are not homomorphisms, e.g. the maximum segment sum problem, the methodology provides a systematic way of embedding into a homomorphism. The approach is based on analyzing two inherently sequential representations of the function based on cons- and snoc-lists." | |
650 | 4 | |a Homomorphisms (Mathematics) | |
650 | 4 | |a Parallel programming (Computer science) | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 0 | 7 | |a Theoretische Informatik |0 (DE-588)4196735-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Theoretische Informatik |0 (DE-588)4196735-5 |D s |
689 | 0 | 1 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Fakultät für Mathematik und Informatik: MIP |t Universität <Passau> |v 1995,12 |w (DE-604)BV000905393 |9 1995,12 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006911073 |
Datensatz im Suchindex
_version_ | 1820882317172801536 |
---|---|
adam_text | |
any_adam_object | |
author | Gorlač, Sergej |
author_facet | Gorlač, Sergej |
author_role | aut |
author_sort | Gorlač, Sergej |
author_variant | s g sg |
building | Verbundindex |
bvnumber | BV010381097 |
classification_rvk | SS 5600 |
ctrlnum | (OCoLC)35571459 (DE-599)BVBBV010381097 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV010381097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990210</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">950912s1995 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)35571459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010381097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-154</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorlač, Sergej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Constructing list homomorphisms</subfield><subfield code="c">Sergei Gorlatch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Universität <Passau> / Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="v">1995,12</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "List homomorphisms are functions which can be efficiently computed in parallel since they ideally suit the divide-and- conquer paradigm. We propose a simple approach to testing whether a function is a homomorphism and, if so, how it can be parallelized. For some interesting functions which are not homomorphisms, e.g. the maximum segment sum problem, the methodology provides a systematic way of embedding into a homomorphism. The approach is based on analyzing two inherently sequential representations of the function based on cons- and snoc-lists."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homomorphisms (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel programming (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fakultät für Mathematik und Informatik: MIP</subfield><subfield code="t">Universität <Passau></subfield><subfield code="v">1995,12</subfield><subfield code="w">(DE-604)BV000905393</subfield><subfield code="9">1995,12</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006911073</subfield></datafield></record></collection> |
id | DE-604.BV010381097 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T17:04:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006911073 |
oclc_num | 35571459 |
open_access_boolean | |
owner | DE-154 DE-739 DE-12 DE-384 DE-29T DE-91G DE-BY-TUM DE-634 |
owner_facet | DE-154 DE-739 DE-12 DE-384 DE-29T DE-91G DE-BY-TUM DE-634 |
physical | 17 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series2 | Universität <Passau> / Fakultät für Mathematik und Informatik: MIP |
spelling | Gorlač, Sergej Verfasser aut Constructing list homomorphisms Sergei Gorlatch Passau 1995 17 S. txt rdacontent n rdamedia nc rdacarrier Universität <Passau> / Fakultät für Mathematik und Informatik: MIP 1995,12 Abstract: "List homomorphisms are functions which can be efficiently computed in parallel since they ideally suit the divide-and- conquer paradigm. We propose a simple approach to testing whether a function is a homomorphism and, if so, how it can be parallelized. For some interesting functions which are not homomorphisms, e.g. the maximum segment sum problem, the methodology provides a systematic way of embedding into a homomorphism. The approach is based on analyzing two inherently sequential representations of the function based on cons- and snoc-lists." Homomorphisms (Mathematics) Parallel programming (Computer science) Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Theoretische Informatik (DE-588)4196735-5 s Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 Fakultät für Mathematik und Informatik: MIP Universität <Passau> 1995,12 (DE-604)BV000905393 1995,12 |
spellingShingle | Gorlač, Sergej Constructing list homomorphisms Homomorphisms (Mathematics) Parallel programming (Computer science) Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4196735-5 (DE-588)4026894-9 (DE-588)4037944-9 |
title | Constructing list homomorphisms |
title_auth | Constructing list homomorphisms |
title_exact_search | Constructing list homomorphisms |
title_full | Constructing list homomorphisms Sergei Gorlatch |
title_fullStr | Constructing list homomorphisms Sergei Gorlatch |
title_full_unstemmed | Constructing list homomorphisms Sergei Gorlatch |
title_short | Constructing list homomorphisms |
title_sort | constructing list homomorphisms |
topic | Homomorphisms (Mathematics) Parallel programming (Computer science) Sequences (Mathematics) Theoretische Informatik (DE-588)4196735-5 gnd Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Homomorphisms (Mathematics) Parallel programming (Computer science) Sequences (Mathematics) Theoretische Informatik Informatik Mathematik |
volume_link | (DE-604)BV000905393 |
work_keys_str_mv | AT gorlacsergej constructinglisthomomorphisms |