Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems:
Abstract: "For the parallel integration of stiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on 'parallelism across the problem', 'parallelism across the method' and on 'parallelism across the steps'. The first type o...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1993
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1993,22 |
Schlagworte: | |
Zusammenfassung: | Abstract: "For the parallel integration of stiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on 'parallelism across the problem', 'parallelism across the method' and on 'parallelism across the steps'. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge- Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 10 with respect to the best sequential codes." |
Beschreibung: | 13 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010188367 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950518s1993 |||| 00||| engod | ||
035 | |a (OCoLC)32230944 | ||
035 | |a (DE-599)BVBBV010188367 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems |c P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen |
264 | 1 | |a Amsterdam |c 1993 | |
300 | |a 13 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1993,22 | |
520 | 3 | |a Abstract: "For the parallel integration of stiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on 'parallelism across the problem', 'parallelism across the method' and on 'parallelism across the steps'. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge- Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 10 with respect to the best sequential codes." | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
700 | 1 | |a Veen, W. A. van der |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1993,22 |w (DE-604)BV010177152 |9 1993,22 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006768895 |
Datensatz im Suchindex
_version_ | 1804124589882605568 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Veen, W. A. van der |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Veen, W. A. van der |
author_role | aut aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh b p s bp bps w a v d v wavd wavdv |
building | Verbundindex |
bvnumber | BV010188367 |
ctrlnum | (OCoLC)32230944 (DE-599)BVBBV010188367 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02424nam a2200313 cb4500</leader><controlfield tag="001">BV010188367</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950518s1993 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32230944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010188367</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1993,22</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "For the parallel integration of stiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on 'parallelism across the problem', 'parallelism across the method' and on 'parallelism across the steps'. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge- Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 10 with respect to the best sequential codes."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Veen, W. A. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1993,22</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1993,22</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006768895</subfield></datafield></record></collection> |
id | DE-604.BV010188367 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:04Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006768895 |
oclc_num | 32230944 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 13 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen Amsterdam 1993 13 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1993,22 Abstract: "For the parallel integration of stiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on 'parallelism across the problem', 'parallelism across the method' and on 'parallelism across the steps'. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge- Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 10 with respect to the best sequential codes." Runge-Kutta formulas Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Veen, W. A. van der Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1993,22 (DE-604)BV010177152 1993,22 |
spellingShingle | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Veen, W. A. van der Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems Runge-Kutta formulas |
title | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems |
title_auth | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems |
title_exact_search | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems |
title_full | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen |
title_fullStr | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen |
title_full_unstemmed | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems P. J. van der Houwen ; B. P. Sommeijer ; W. A. van der Veen |
title_short | Parallelism across the steps in iterated Runge-Kutta methods for stiff initial value problems |
title_sort | parallelism across the steps in iterated runge kutta methods for stiff initial value problems |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander parallelismacrossthestepsiniteratedrungekuttamethodsforstiffinitialvalueproblems AT sommeijerbenp parallelismacrossthestepsiniteratedrungekuttamethodsforstiffinitialvalueproblems AT veenwavander parallelismacrossthestepsiniteratedrungekuttamethodsforstiffinitialvalueproblems |