Parallel block predictor-corrector methods of Runge-Kutta type:
Abstract: "In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach consists of applying the predictor-corrector method not only at step points, but also at off- step points (block points), so that, in each step, a whole block of approximations to...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1992
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1992,20 |
Schlagworte: | |
Zusammenfassung: | Abstract: "In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach consists of applying the predictor-corrector method not only at step points, but also at off- step points (block points), so that, in each step, a whole block of approximations to the exact solution is computed. In the next step, these approximations are used for obtaining a high-order predictor formula by Lagrange or Hermite interpolation. By choosing the abscissas of the off- step points narrowly spaced, a much more accurately predicted value is obtained than by predictor formulas based on preceding step point values Since the approximations at the off-step points to be computed in each step can be obtained in parallel, the sequential costs of these block predictor-corrector methods are comparable with those of a conventional predictor-corrector method. Futhermore, by using Runge-Kutta correctors, the predictor-corrector iteration scheme itself is also highly parallel. Application of these block predictor-corrector methods based on Langrange- Gauss pairs to a few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 2 until 11 when compared with the best sequential methods. |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010186145 | ||
003 | DE-604 | ||
005 | 20180302 | ||
007 | t | ||
008 | 950517s1992 |||| 00||| engod | ||
035 | |a (OCoLC)29451531 | ||
035 | |a (DE-599)BVBBV010186145 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallel block predictor-corrector methods of Runge-Kutta type |c P. J. van der Houwen ; Nguyen huu Cong |
264 | 1 | |a Amsterdam |c 1992 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1992,20 | |
520 | 3 | |a Abstract: "In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach consists of applying the predictor-corrector method not only at step points, but also at off- step points (block points), so that, in each step, a whole block of approximations to the exact solution is computed. In the next step, these approximations are used for obtaining a high-order predictor formula by Lagrange or Hermite interpolation. By choosing the abscissas of the off- step points narrowly spaced, a much more accurately predicted value is obtained than by predictor formulas based on preceding step point values | |
520 | 3 | |a Since the approximations at the off-step points to be computed in each step can be obtained in parallel, the sequential costs of these block predictor-corrector methods are comparable with those of a conventional predictor-corrector method. Futhermore, by using Runge-Kutta correctors, the predictor-corrector iteration scheme itself is also highly parallel. Application of these block predictor-corrector methods based on Langrange- Gauss pairs to a few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 2 until 11 when compared with the best sequential methods. | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Nguyen, Huu Cong |e Verfasser |0 (DE-588)1150724099 |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1992,20 |w (DE-604)BV010177152 |9 1992,20 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006766957 |
Datensatz im Suchindex
_version_ | 1804124586708566016 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Nguyen, Huu Cong |
author_GND | (DE-588)1150724099 |
author_facet | Houwen, Pieter J. van der Nguyen, Huu Cong |
author_role | aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh h c n hc hcn |
building | Verbundindex |
bvnumber | BV010186145 |
ctrlnum | (OCoLC)29451531 (DE-599)BVBBV010186145 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02339nam a2200313 cb4500</leader><controlfield tag="001">BV010186145</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950517s1992 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)29451531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010186145</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel block predictor-corrector methods of Runge-Kutta type</subfield><subfield code="c">P. J. van der Houwen ; Nguyen huu Cong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1992,20</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach consists of applying the predictor-corrector method not only at step points, but also at off- step points (block points), so that, in each step, a whole block of approximations to the exact solution is computed. In the next step, these approximations are used for obtaining a high-order predictor formula by Lagrange or Hermite interpolation. By choosing the abscissas of the off- step points narrowly spaced, a much more accurately predicted value is obtained than by predictor formulas based on preceding step point values</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Since the approximations at the off-step points to be computed in each step can be obtained in parallel, the sequential costs of these block predictor-corrector methods are comparable with those of a conventional predictor-corrector method. Futhermore, by using Runge-Kutta correctors, the predictor-corrector iteration scheme itself is also highly parallel. Application of these block predictor-corrector methods based on Langrange- Gauss pairs to a few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 2 until 11 when compared with the best sequential methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Huu Cong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1150724099</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1992,20</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1992,20</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006766957</subfield></datafield></record></collection> |
id | DE-604.BV010186145 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:48:01Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006766957 |
oclc_num | 29451531 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Parallel block predictor-corrector methods of Runge-Kutta type P. J. van der Houwen ; Nguyen huu Cong Amsterdam 1992 10 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1992,20 Abstract: "In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach consists of applying the predictor-corrector method not only at step points, but also at off- step points (block points), so that, in each step, a whole block of approximations to the exact solution is computed. In the next step, these approximations are used for obtaining a high-order predictor formula by Lagrange or Hermite interpolation. By choosing the abscissas of the off- step points narrowly spaced, a much more accurately predicted value is obtained than by predictor formulas based on preceding step point values Since the approximations at the off-step points to be computed in each step can be obtained in parallel, the sequential costs of these block predictor-corrector methods are comparable with those of a conventional predictor-corrector method. Futhermore, by using Runge-Kutta correctors, the predictor-corrector iteration scheme itself is also highly parallel. Application of these block predictor-corrector methods based on Langrange- Gauss pairs to a few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 2 until 11 when compared with the best sequential methods. Runge-Kutta formulas Nguyen, Huu Cong Verfasser (DE-588)1150724099 aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1992,20 (DE-604)BV010177152 1992,20 |
spellingShingle | Houwen, Pieter J. van der Nguyen, Huu Cong Parallel block predictor-corrector methods of Runge-Kutta type Runge-Kutta formulas |
title | Parallel block predictor-corrector methods of Runge-Kutta type |
title_auth | Parallel block predictor-corrector methods of Runge-Kutta type |
title_exact_search | Parallel block predictor-corrector methods of Runge-Kutta type |
title_full | Parallel block predictor-corrector methods of Runge-Kutta type P. J. van der Houwen ; Nguyen huu Cong |
title_fullStr | Parallel block predictor-corrector methods of Runge-Kutta type P. J. van der Houwen ; Nguyen huu Cong |
title_full_unstemmed | Parallel block predictor-corrector methods of Runge-Kutta type P. J. van der Houwen ; Nguyen huu Cong |
title_short | Parallel block predictor-corrector methods of Runge-Kutta type |
title_sort | parallel block predictor corrector methods of runge kutta type |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander parallelblockpredictorcorrectormethodsofrungekuttatype AT nguyenhuucong parallelblockpredictorcorrectormethodsofrungekuttatype |