Note on explicit parallel multistep Runge-Kutta methods:
"This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is required. This family is compared with the family of explicit linear...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1988
|
Schriftenreihe: | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM
1988,14 |
Schlagworte: | |
Zusammenfassung: | "This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is required. This family is compared with the family of explicit linear two-step methods of Adams type and examples of methods with increased stability intervals and methods with increased order of accuracy are given. These methods are applied to test problems taken from the test set of Hull et al. and compared with conventional linear multistep methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we describe a rather general class of k-step, m-stage Runge-Kutta methods in which the m righthand side evaluations can also be computed in parallel. For this class we indicate how the order equations and stability region can be derived." |
Beschreibung: | 10 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010181061 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 950515s1988 |||| 00||| engod | ||
035 | |a (OCoLC)20058345 | ||
035 | |a (DE-599)BVBBV010181061 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Note on explicit parallel multistep Runge-Kutta methods |c P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik |
264 | 1 | |a Amsterdam |c 1988 | |
300 | |a 10 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |v 1988,14 | |
520 | 3 | |a "This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is required. This family is compared with the family of explicit linear two-step methods of Adams type and examples of methods with increased stability intervals and methods with increased order of accuracy are given. These methods are applied to test problems taken from the test set of Hull et al. and compared with conventional linear multistep methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we describe a rather general class of k-step, m-stage Runge-Kutta methods in which the m righthand side evaluations can also be computed in parallel. For this class we indicate how the order equations and stability region can be derived." | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
700 | 1 | |a Mourik, P. A. van |e Verfasser |4 aut | |
810 | 2 | |a Afdeling Numerieke Wiskunde: Report NM |t Centrum voor Wiskunde en Informatica <Amsterdam> |v 1988,14 |w (DE-604)BV010177152 |9 1988,14 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006763123 |
Datensatz im Suchindex
_version_ | 1804124580331126784 |
---|---|
any_adam_object | |
author | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Mourik, P. A. van |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Mourik, P. A. van |
author_role | aut aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh b p s bp bps p a v m pav pavm |
building | Verbundindex |
bvnumber | BV010181061 |
ctrlnum | (OCoLC)20058345 (DE-599)BVBBV010181061 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02070nam a2200325 cb4500</leader><controlfield tag="001">BV010181061</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">950515s1988 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)20058345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010181061</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Note on explicit parallel multistep Runge-Kutta methods</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="v">1988,14</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is required. This family is compared with the family of explicit linear two-step methods of Adams type and examples of methods with increased stability intervals and methods with increased order of accuracy are given. These methods are applied to test problems taken from the test set of Hull et al. and compared with conventional linear multistep methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we describe a rather general class of k-step, m-stage Runge-Kutta methods in which the m righthand side evaluations can also be computed in parallel. For this class we indicate how the order equations and stability region can be derived."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mourik, P. A. van</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Afdeling Numerieke Wiskunde: Report NM</subfield><subfield code="t">Centrum voor Wiskunde en Informatica <Amsterdam></subfield><subfield code="v">1988,14</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">1988,14</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006763123</subfield></datafield></record></collection> |
id | DE-604.BV010181061 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:47:55Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006763123 |
oclc_num | 20058345 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 10 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
record_format | marc |
series2 | Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM |
spelling | Houwen, Pieter J. van der Verfasser aut Note on explicit parallel multistep Runge-Kutta methods P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik Amsterdam 1988 10 S. txt rdacontent n rdamedia nc rdacarrier Centrum voor Wiskunde en Informatica <Amsterdam> / Afdeling Numerieke Wiskunde: Report NM 1988,14 "This paper investigates a family of explicit two-step, two-stage Runge-Kutta methods in which the two righthand side evaluations can be computed in parallel, so that effectively only one righthand side evaluation per step is required. This family is compared with the family of explicit linear two-step methods of Adams type and examples of methods with increased stability intervals and methods with increased order of accuracy are given. These methods are applied to test problems taken from the test set of Hull et al. and compared with conventional linear multistep methods. In addition to the family of two-step, two-stage Runge-Kutta methods, we describe a rather general class of k-step, m-stage Runge-Kutta methods in which the m righthand side evaluations can also be computed in parallel. For this class we indicate how the order equations and stability region can be derived." Numerical analysis Runge-Kutta formulas Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Mourik, P. A. van Verfasser aut Afdeling Numerieke Wiskunde: Report NM Centrum voor Wiskunde en Informatica <Amsterdam> 1988,14 (DE-604)BV010177152 1988,14 |
spellingShingle | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Mourik, P. A. van Note on explicit parallel multistep Runge-Kutta methods Numerical analysis Runge-Kutta formulas |
title | Note on explicit parallel multistep Runge-Kutta methods |
title_auth | Note on explicit parallel multistep Runge-Kutta methods |
title_exact_search | Note on explicit parallel multistep Runge-Kutta methods |
title_full | Note on explicit parallel multistep Runge-Kutta methods P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik |
title_fullStr | Note on explicit parallel multistep Runge-Kutta methods P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik |
title_full_unstemmed | Note on explicit parallel multistep Runge-Kutta methods P. J. van der Houwen ; B. P. Sommeijer ; P. A. van Mourik |
title_short | Note on explicit parallel multistep Runge-Kutta methods |
title_sort | note on explicit parallel multistep runge kutta methods |
topic | Numerical analysis Runge-Kutta formulas |
topic_facet | Numerical analysis Runge-Kutta formulas |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander noteonexplicitparallelmultisteprungekuttamethods AT sommeijerbenp noteonexplicitparallelmultisteprungekuttamethods AT mourikpavan noteonexplicitparallelmultisteprungekuttamethods |