The modified conjugate residual method for partial differential equations:
This paper presents the Modified Conjugate Residual (MCR) Method, a stabilized version of Luenberger's Method of Conjugate Residuals, for solving large sparse systems of linear equations. This iterative method has special significance when the system is not positive definite so that methods lik...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[New Haven, Conn.]
1977
|
Schriftenreihe: | Yale University <New Haven, Conn.> / Department of Computer Science: Research report
107 |
Schlagworte: | |
Zusammenfassung: | This paper presents the Modified Conjugate Residual (MCR) Method, a stabilized version of Luenberger's Method of Conjugate Residuals, for solving large sparse systems of linear equations. This iterative method has special significance when the system is not positive definite so that methods like Conjugate Gradients are inapplicable. In the special case when the system is positive definite, MCR reduces to one of the family of general conjugate gradient methods discussed by Hestenes. |
Beschreibung: | 23 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009905465 | ||
003 | DE-604 | ||
005 | 19941121 | ||
007 | t | ||
008 | 941121s1977 |||| 00||| engod | ||
035 | |a (OCoLC)227477558 | ||
035 | |a (DE-599)BVBBV009905465 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Chandra, Rati |e Verfasser |4 aut | |
245 | 1 | 0 | |a The modified conjugate residual method for partial differential equations |c R. Chandra, S. C. Eisenstat, and M. H. Schultz |
264 | 1 | |a [New Haven, Conn.] |c 1977 | |
300 | |a 23 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Yale University <New Haven, Conn.> / Department of Computer Science: Research report |v 107 | |
520 | 3 | |a This paper presents the Modified Conjugate Residual (MCR) Method, a stabilized version of Luenberger's Method of Conjugate Residuals, for solving large sparse systems of linear equations. This iterative method has special significance when the system is not positive definite so that methods like Conjugate Gradients are inapplicable. In the special case when the system is positive definite, MCR reduces to one of the family of general conjugate gradient methods discussed by Hestenes. | |
650 | 7 | |a Error analysis |2 dtict | |
650 | 7 | |a Finite difference theory |2 dtict | |
650 | 7 | |a Finite element analysis |2 dtict | |
650 | 7 | |a Gradients |2 dtict | |
650 | 7 | |a Iterations |2 dtict | |
650 | 7 | |a Linear algebra |2 dtict | |
650 | 7 | |a Numerical analysis |2 dtict | |
650 | 7 | |a Partial differential equations |2 dtict | |
650 | 7 | |a Residues |2 dtict | |
650 | 7 | |a Solutions(general) |2 dtict | |
650 | 7 | |a Sparse matrix |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
700 | 1 | |a Eisenstat, Stanley C. |e Verfasser |4 aut | |
700 | 1 | |a Schultz, Martin H. |e Verfasser |4 aut | |
810 | 2 | |a Department of Computer Science: Research report |t Yale University <New Haven, Conn.> |v 107 |w (DE-604)BV006663362 |9 107 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006560387 |
Datensatz im Suchindex
_version_ | 1804124267636326400 |
---|---|
any_adam_object | |
author | Chandra, Rati Eisenstat, Stanley C. Schultz, Martin H. |
author_facet | Chandra, Rati Eisenstat, Stanley C. Schultz, Martin H. |
author_role | aut aut aut |
author_sort | Chandra, Rati |
author_variant | r c rc s c e sc sce m h s mh mhs |
building | Verbundindex |
bvnumber | BV009905465 |
ctrlnum | (OCoLC)227477558 (DE-599)BVBBV009905465 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02049nam a2200445 cb4500</leader><controlfield tag="001">BV009905465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19941121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941121s1977 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227477558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009905465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chandra, Rati</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The modified conjugate residual method for partial differential equations</subfield><subfield code="c">R. Chandra, S. C. Eisenstat, and M. H. Schultz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[New Haven, Conn.]</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Yale University <New Haven, Conn.> / Department of Computer Science: Research report</subfield><subfield code="v">107</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This paper presents the Modified Conjugate Residual (MCR) Method, a stabilized version of Luenberger's Method of Conjugate Residuals, for solving large sparse systems of linear equations. This iterative method has special significance when the system is not positive definite so that methods like Conjugate Gradients are inapplicable. In the special case when the system is positive definite, MCR reduces to one of the family of general conjugate gradient methods discussed by Hestenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Error analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite difference theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite element analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gradients</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iterations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear algebra</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Residues</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solutions(general)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sparse matrix</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eisenstat, Stanley C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schultz, Martin H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Research report</subfield><subfield code="t">Yale University <New Haven, Conn.></subfield><subfield code="v">107</subfield><subfield code="w">(DE-604)BV006663362</subfield><subfield code="9">107</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006560387</subfield></datafield></record></collection> |
id | DE-604.BV009905465 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:42:57Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006560387 |
oclc_num | 227477558 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 23 S. |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
record_format | marc |
series2 | Yale University <New Haven, Conn.> / Department of Computer Science: Research report |
spelling | Chandra, Rati Verfasser aut The modified conjugate residual method for partial differential equations R. Chandra, S. C. Eisenstat, and M. H. Schultz [New Haven, Conn.] 1977 23 S. txt rdacontent n rdamedia nc rdacarrier Yale University <New Haven, Conn.> / Department of Computer Science: Research report 107 This paper presents the Modified Conjugate Residual (MCR) Method, a stabilized version of Luenberger's Method of Conjugate Residuals, for solving large sparse systems of linear equations. This iterative method has special significance when the system is not positive definite so that methods like Conjugate Gradients are inapplicable. In the special case when the system is positive definite, MCR reduces to one of the family of general conjugate gradient methods discussed by Hestenes. Error analysis dtict Finite difference theory dtict Finite element analysis dtict Gradients dtict Iterations dtict Linear algebra dtict Numerical analysis dtict Partial differential equations dtict Residues dtict Solutions(general) dtict Sparse matrix dtict Theoretical Mathematics scgdst Eisenstat, Stanley C. Verfasser aut Schultz, Martin H. Verfasser aut Department of Computer Science: Research report Yale University <New Haven, Conn.> 107 (DE-604)BV006663362 107 |
spellingShingle | Chandra, Rati Eisenstat, Stanley C. Schultz, Martin H. The modified conjugate residual method for partial differential equations Error analysis dtict Finite difference theory dtict Finite element analysis dtict Gradients dtict Iterations dtict Linear algebra dtict Numerical analysis dtict Partial differential equations dtict Residues dtict Solutions(general) dtict Sparse matrix dtict Theoretical Mathematics scgdst |
title | The modified conjugate residual method for partial differential equations |
title_auth | The modified conjugate residual method for partial differential equations |
title_exact_search | The modified conjugate residual method for partial differential equations |
title_full | The modified conjugate residual method for partial differential equations R. Chandra, S. C. Eisenstat, and M. H. Schultz |
title_fullStr | The modified conjugate residual method for partial differential equations R. Chandra, S. C. Eisenstat, and M. H. Schultz |
title_full_unstemmed | The modified conjugate residual method for partial differential equations R. Chandra, S. C. Eisenstat, and M. H. Schultz |
title_short | The modified conjugate residual method for partial differential equations |
title_sort | the modified conjugate residual method for partial differential equations |
topic | Error analysis dtict Finite difference theory dtict Finite element analysis dtict Gradients dtict Iterations dtict Linear algebra dtict Numerical analysis dtict Partial differential equations dtict Residues dtict Solutions(general) dtict Sparse matrix dtict Theoretical Mathematics scgdst |
topic_facet | Error analysis Finite difference theory Finite element analysis Gradients Iterations Linear algebra Numerical analysis Partial differential equations Residues Solutions(general) Sparse matrix Theoretical Mathematics |
volume_link | (DE-604)BV006663362 |
work_keys_str_mv | AT chandrarati themodifiedconjugateresidualmethodforpartialdifferentialequations AT eisenstatstanleyc themodifiedconjugateresidualmethodforpartialdifferentialequations AT schultzmartinh themodifiedconjugateresidualmethodforpartialdifferentialequations |