The numerically stable reconstruction of a Jacobi matrix from spectral data:
A stable algorithm is given for the construction of a symmetric tridiagonal matrix of order n from its eigenvalues and the eigenvalues of its upper left principal submatrix of order n - 1. The algorithm might be of help in the approximate solution of inverse eigenvalue problems for Sturm-Liouville e...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Madison, Wisconsin
1977
|
Schriftenreihe: | Mathematics Research Center <Madison, Wis.>: MRC technical summary report
1727 |
Schlagworte: | |
Zusammenfassung: | A stable algorithm is given for the construction of a symmetric tridiagonal matrix of order n from its eigenvalues and the eigenvalues of its upper left principal submatrix of order n - 1. The algorithm might be of help in the approximate solution of inverse eigenvalue problems for Sturm-Liouville equations. (Author). |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009899394 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 941115s1977 |||| 00||| engod | ||
035 | |a (OCoLC)227453247 | ||
035 | |a (DE-599)BVBBV009899394 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a De Boor, Carl |d 1937- |e Verfasser |0 (DE-588)109311507 |4 aut | |
245 | 1 | 0 | |a The numerically stable reconstruction of a Jacobi matrix from spectral data |c C. de Boor and G. H. Golub |
264 | 1 | |a Madison, Wisconsin |c 1977 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 1727 | |
520 | 3 | |a A stable algorithm is given for the construction of a symmetric tridiagonal matrix of order n from its eigenvalues and the eigenvalues of its upper left principal submatrix of order n - 1. The algorithm might be of help in the approximate solution of inverse eigenvalue problems for Sturm-Liouville equations. (Author). | |
650 | 4 | |a Jacobi matrices | |
650 | 4 | |a Sturm-Liouville theory | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Approximation(mathematics) |2 dtict | |
650 | 7 | |a Boundary value problems |2 dtict | |
650 | 7 | |a Eigenvalues |2 dtict | |
650 | 7 | |a Gaussian quadrature |2 dtict | |
650 | 7 | |a Matrices(mathematics) |2 dtict | |
650 | 7 | |a Numerical quadrature |2 dtict | |
650 | 7 | |a Orthogonality |2 dtict | |
650 | 7 | |a Polynomials |2 dtict | |
650 | 7 | |a Problem solving |2 dtict | |
650 | 7 | |a Solutions(general) |2 dtict | |
650 | 7 | |a Spectrum analysis |2 dtict | |
650 | 7 | |a Stability |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
700 | 1 | |a Golub, Gene H. |d 1932-2007 |e Verfasser |0 (DE-588)120319713 |4 aut | |
830 | 0 | |a Mathematics Research Center <Madison, Wis.>: MRC technical summary report |v 1727 |w (DE-604)BV002809217 |9 1727 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006556085 |
Datensatz im Suchindex
_version_ | 1804124260327751680 |
---|---|
any_adam_object | |
author | De Boor, Carl 1937- Golub, Gene H. 1932-2007 |
author_GND | (DE-588)109311507 (DE-588)120319713 |
author_facet | De Boor, Carl 1937- Golub, Gene H. 1932-2007 |
author_role | aut aut |
author_sort | De Boor, Carl 1937- |
author_variant | b c d bc bcd g h g gh ghg |
building | Verbundindex |
bvnumber | BV009899394 |
ctrlnum | (OCoLC)227453247 (DE-599)BVBBV009899394 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01995nam a2200481 cb4500</leader><controlfield tag="001">BV009899394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941115s1977 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227453247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009899394</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Boor, Carl</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109311507</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The numerically stable reconstruction of a Jacobi matrix from spectral data</subfield><subfield code="c">C. de Boor and G. H. Golub</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Madison, Wisconsin</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">1727</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">A stable algorithm is given for the construction of a symmetric tridiagonal matrix of order n from its eigenvalues and the eigenvalues of its upper left principal submatrix of order n - 1. The algorithm might be of help in the approximate solution of inverse eigenvalue problems for Sturm-Liouville equations. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobi matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sturm-Liouville theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenvalues</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gaussian quadrature</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical quadrature</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonality</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problem solving</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solutions(general)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectrum analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stability</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Golub, Gene H.</subfield><subfield code="d">1932-2007</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120319713</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics Research Center <Madison, Wis.>: MRC technical summary report</subfield><subfield code="v">1727</subfield><subfield code="w">(DE-604)BV002809217</subfield><subfield code="9">1727</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006556085</subfield></datafield></record></collection> |
id | DE-604.BV009899394 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:42:50Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006556085 |
oclc_num | 227453247 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
record_format | marc |
series | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
series2 | Mathematics Research Center <Madison, Wis.>: MRC technical summary report |
spelling | De Boor, Carl 1937- Verfasser (DE-588)109311507 aut The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G. H. Golub Madison, Wisconsin 1977 18 S. txt rdacontent n rdamedia nc rdacarrier Mathematics Research Center <Madison, Wis.>: MRC technical summary report 1727 A stable algorithm is given for the construction of a symmetric tridiagonal matrix of order n from its eigenvalues and the eigenvalues of its upper left principal submatrix of order n - 1. The algorithm might be of help in the approximate solution of inverse eigenvalue problems for Sturm-Liouville equations. (Author). Jacobi matrices Sturm-Liouville theory Algorithms dtict Approximation(mathematics) dtict Boundary value problems dtict Eigenvalues dtict Gaussian quadrature dtict Matrices(mathematics) dtict Numerical quadrature dtict Orthogonality dtict Polynomials dtict Problem solving dtict Solutions(general) dtict Spectrum analysis dtict Stability dtict Theoretical Mathematics scgdst Golub, Gene H. 1932-2007 Verfasser (DE-588)120319713 aut Mathematics Research Center <Madison, Wis.>: MRC technical summary report 1727 (DE-604)BV002809217 1727 |
spellingShingle | De Boor, Carl 1937- Golub, Gene H. 1932-2007 The numerically stable reconstruction of a Jacobi matrix from spectral data Mathematics Research Center <Madison, Wis.>: MRC technical summary report Jacobi matrices Sturm-Liouville theory Algorithms dtict Approximation(mathematics) dtict Boundary value problems dtict Eigenvalues dtict Gaussian quadrature dtict Matrices(mathematics) dtict Numerical quadrature dtict Orthogonality dtict Polynomials dtict Problem solving dtict Solutions(general) dtict Spectrum analysis dtict Stability dtict Theoretical Mathematics scgdst |
title | The numerically stable reconstruction of a Jacobi matrix from spectral data |
title_auth | The numerically stable reconstruction of a Jacobi matrix from spectral data |
title_exact_search | The numerically stable reconstruction of a Jacobi matrix from spectral data |
title_full | The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G. H. Golub |
title_fullStr | The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G. H. Golub |
title_full_unstemmed | The numerically stable reconstruction of a Jacobi matrix from spectral data C. de Boor and G. H. Golub |
title_short | The numerically stable reconstruction of a Jacobi matrix from spectral data |
title_sort | the numerically stable reconstruction of a jacobi matrix from spectral data |
topic | Jacobi matrices Sturm-Liouville theory Algorithms dtict Approximation(mathematics) dtict Boundary value problems dtict Eigenvalues dtict Gaussian quadrature dtict Matrices(mathematics) dtict Numerical quadrature dtict Orthogonality dtict Polynomials dtict Problem solving dtict Solutions(general) dtict Spectrum analysis dtict Stability dtict Theoretical Mathematics scgdst |
topic_facet | Jacobi matrices Sturm-Liouville theory Algorithms Approximation(mathematics) Boundary value problems Eigenvalues Gaussian quadrature Matrices(mathematics) Numerical quadrature Orthogonality Polynomials Problem solving Solutions(general) Spectrum analysis Stability Theoretical Mathematics |
volume_link | (DE-604)BV002809217 |
work_keys_str_mv | AT deboorcarl thenumericallystablereconstructionofajacobimatrixfromspectraldata AT golubgeneh thenumericallystablereconstructionofajacobimatrixfromspectraldata |