Differential geometry and statistics:
Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Chapman & Hall
1993
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Monographs on statistics and applied probability
48 |
Schlagworte: | |
Zusammenfassung: | Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry |
Beschreibung: | Literaturverz. S. 264 - 266 |
Beschreibung: | XIII, 272 S. |
ISBN: | 0412398605 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009534575 | ||
003 | DE-604 | ||
005 | 20100823 | ||
007 | t | ||
008 | 940311s1993 |||| 00||| eng d | ||
020 | |a 0412398605 |9 0-412-39860-5 | ||
035 | |a (OCoLC)27266305 | ||
035 | |a (DE-599)BVBBV009534575 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-N2 |a DE-19 |a DE-703 |a DE-706 |a DE-634 |a DE-91 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA276 | |
082 | 0 | |a 519.5 |2 20 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 530f |2 stub | ||
084 | |a MAT 620f |2 stub | ||
100 | 1 | |a Murray, Michael K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential geometry and statistics |c Michael K. Murray and John W. Rice |
250 | |a 1. ed. | ||
264 | 1 | |a London [u.a.] |b Chapman & Hall |c 1993 | |
300 | |a XIII, 272 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Monographs on statistics and applied probability |v 48 | |
500 | |a Literaturverz. S. 264 - 266 | ||
520 | 3 | |a Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics | |
520 | |a It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry | ||
650 | 4 | |a Geometri, Diferensiyel | |
650 | 7 | |a Géométrie différentielle |2 ram | |
650 | 4 | |a Matematiksel istatistik | |
650 | 7 | |a Meetkunde |2 gtt | |
650 | 7 | |a Statistiek |2 gtt | |
650 | 7 | |a Statistique mathématique |2 ram | |
650 | 7 | |a application statistique |2 inriac | |
650 | 7 | |a courbure |2 inriac | |
650 | 7 | |a géométrie différentielle |2 inriac | |
650 | 7 | |a statistique |2 inriac | |
650 | 4 | |a Statistik | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rice, John W. |e Verfasser |4 aut | |
830 | 0 | |a Monographs on statistics and applied probability |v 48 |w (DE-604)BV002494005 |9 48 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006296258 |
Datensatz im Suchindex
_version_ | 1804123872350437376 |
---|---|
any_adam_object | |
author | Murray, Michael K. Rice, John W. |
author_facet | Murray, Michael K. Rice, John W. |
author_role | aut aut |
author_sort | Murray, Michael K. |
author_variant | m k m mk mkm j w r jw jwr |
building | Verbundindex |
bvnumber | BV009534575 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276 |
callnumber-search | QA276 |
callnumber-sort | QA 3276 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 SK 800 SK 820 |
classification_tum | MAT 530f MAT 620f |
ctrlnum | (OCoLC)27266305 (DE-599)BVBBV009534575 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03326nam a2200637 cb4500</leader><controlfield tag="001">BV009534575</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100823 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940311s1993 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0412398605</subfield><subfield code="9">0-412-39860-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)27266305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009534575</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murray, Michael K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential geometry and statistics</subfield><subfield code="c">Michael K. Murray and John W. Rice</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Chapman & Hall</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 272 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs on statistics and applied probability</subfield><subfield code="v">48</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 264 - 266</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometri, Diferensiyel</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie différentielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matematiksel istatistik</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Meetkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">application statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">courbure</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">géométrie différentielle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rice, John W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs on statistics and applied probability</subfield><subfield code="v">48</subfield><subfield code="w">(DE-604)BV002494005</subfield><subfield code="9">48</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006296258</subfield></datafield></record></collection> |
id | DE-604.BV009534575 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:36:40Z |
institution | BVB |
isbn | 0412398605 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006296258 |
oclc_num | 27266305 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-N2 DE-19 DE-BY-UBM DE-703 DE-706 DE-634 DE-91 DE-BY-TUM DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-N2 DE-19 DE-BY-UBM DE-703 DE-706 DE-634 DE-91 DE-BY-TUM DE-11 DE-188 |
physical | XIII, 272 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Chapman & Hall |
record_format | marc |
series | Monographs on statistics and applied probability |
series2 | Monographs on statistics and applied probability |
spelling | Murray, Michael K. Verfasser aut Differential geometry and statistics Michael K. Murray and John W. Rice 1. ed. London [u.a.] Chapman & Hall 1993 XIII, 272 S. txt rdacontent n rdamedia nc rdacarrier Monographs on statistics and applied probability 48 Literaturverz. S. 264 - 266 Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry Geometri, Diferensiyel Géométrie différentielle ram Matematiksel istatistik Meetkunde gtt Statistiek gtt Statistique mathématique ram application statistique inriac courbure inriac géométrie différentielle inriac statistique inriac Statistik Geometry, Differential Mathematical statistics Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Statistik (DE-588)4056995-0 s DE-604 Rice, John W. Verfasser aut Monographs on statistics and applied probability 48 (DE-604)BV002494005 48 |
spellingShingle | Murray, Michael K. Rice, John W. Differential geometry and statistics Monographs on statistics and applied probability Geometri, Diferensiyel Géométrie différentielle ram Matematiksel istatistik Meetkunde gtt Statistiek gtt Statistique mathématique ram application statistique inriac courbure inriac géométrie différentielle inriac statistique inriac Statistik Geometry, Differential Mathematical statistics Differentialgeometrie (DE-588)4012248-7 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4056995-0 |
title | Differential geometry and statistics |
title_auth | Differential geometry and statistics |
title_exact_search | Differential geometry and statistics |
title_full | Differential geometry and statistics Michael K. Murray and John W. Rice |
title_fullStr | Differential geometry and statistics Michael K. Murray and John W. Rice |
title_full_unstemmed | Differential geometry and statistics Michael K. Murray and John W. Rice |
title_short | Differential geometry and statistics |
title_sort | differential geometry and statistics |
topic | Geometri, Diferensiyel Géométrie différentielle ram Matematiksel istatistik Meetkunde gtt Statistiek gtt Statistique mathématique ram application statistique inriac courbure inriac géométrie différentielle inriac statistique inriac Statistik Geometry, Differential Mathematical statistics Differentialgeometrie (DE-588)4012248-7 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Geometri, Diferensiyel Géométrie différentielle Matematiksel istatistik Meetkunde Statistiek Statistique mathématique application statistique courbure géométrie différentielle statistique Statistik Geometry, Differential Mathematical statistics Differentialgeometrie |
volume_link | (DE-604)BV002494005 |
work_keys_str_mv | AT murraymichaelk differentialgeometryandstatistics AT ricejohnw differentialgeometryandstatistics |