Parallel multiple shooting for the solution of initial value problems:
Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
1993
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9309 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted as one evaluation. For special problems, however, it is possible to construct special methods which show a remarkable speed-up close to 100 on parallel computers. Multiple shooting, a method for boundary-value problems with an inherent parallelism, can also be applied efficiently to linear initial-value problems and to non-linear initial- value problems if good approximations are available." |
Beschreibung: | 20 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009298133 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 940321s1993 gw d||| t||| 00||| eng d | ||
016 | 7 | |a 940566907 |2 DE-101 | |
035 | |a (OCoLC)34523892 | ||
035 | |a (DE-599)BVBBV009298133 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-19 |a DE-91G | ||
088 | |a TUM M 9309 | ||
100 | 1 | |a Kiehl, Martin |e Verfasser |0 (DE-588)13095733X |4 aut | |
245 | 1 | 0 | |a Parallel multiple shooting for the solution of initial value problems |c M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München |
264 | 1 | |a München |c 1993 | |
300 | |a 20 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9309 | |
520 | 3 | |a Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted as one evaluation. For special problems, however, it is possible to construct special methods which show a remarkable speed-up close to 100 on parallel computers. Multiple shooting, a method for boundary-value problems with an inherent parallelism, can also be applied efficiently to linear initial-value problems and to non-linear initial- value problems if good approximations are available." | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Initial value problems | |
650 | 4 | |a Parallel processing (Electronic computers) | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9309 |w (DE-604)BV006186461 |9 9309 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006187389 |
Datensatz im Suchindex
_version_ | 1804123739334377472 |
---|---|
any_adam_object | |
author | Kiehl, Martin |
author_GND | (DE-588)13095733X |
author_facet | Kiehl, Martin |
author_role | aut |
author_sort | Kiehl, Martin |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV009298133 |
ctrlnum | (OCoLC)34523892 (DE-599)BVBBV009298133 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01894nam a2200361 cb4500</leader><controlfield tag="001">BV009298133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940321s1993 gw d||| t||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940566907</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)34523892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009298133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM M 9309</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiehl, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13095733X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel multiple shooting for the solution of initial value problems</subfield><subfield code="c">M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9309</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted as one evaluation. For special problems, however, it is possible to construct special methods which show a remarkable speed-up close to 100 on parallel computers. Multiple shooting, a method for boundary-value problems with an inherent parallelism, can also be applied efficiently to linear initial-value problems and to non-linear initial- value problems if good approximations are available."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel processing (Electronic computers)</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9309</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9309</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006187389</subfield></datafield></record></collection> |
id | DE-604.BV009298133 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:34:33Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006187389 |
oclc_num | 34523892 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | 20 S. graph. Darst. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Kiehl, Martin Verfasser (DE-588)13095733X aut Parallel multiple shooting for the solution of initial value problems M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München München 1993 20 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9309 Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted as one evaluation. For special problems, however, it is possible to construct special methods which show a remarkable speed-up close to 100 on parallel computers. Multiple shooting, a method for boundary-value problems with an inherent parallelism, can also be applied efficiently to linear initial-value problems and to non-linear initial- value problems if good approximations are available." Boundary value problems Differential equations Initial value problems Parallel processing (Electronic computers) Technische Universität <München>: TUM-MATH 9309 (DE-604)BV006186461 9309 |
spellingShingle | Kiehl, Martin Parallel multiple shooting for the solution of initial value problems Technische Universität <München>: TUM-MATH Boundary value problems Differential equations Initial value problems Parallel processing (Electronic computers) |
title | Parallel multiple shooting for the solution of initial value problems |
title_auth | Parallel multiple shooting for the solution of initial value problems |
title_exact_search | Parallel multiple shooting for the solution of initial value problems |
title_full | Parallel multiple shooting for the solution of initial value problems M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München |
title_fullStr | Parallel multiple shooting for the solution of initial value problems M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München |
title_full_unstemmed | Parallel multiple shooting for the solution of initial value problems M. Kiehl. TUM, Mathematisches Institut ; Technische Universität München |
title_short | Parallel multiple shooting for the solution of initial value problems |
title_sort | parallel multiple shooting for the solution of initial value problems |
topic | Boundary value problems Differential equations Initial value problems Parallel processing (Electronic computers) |
topic_facet | Boundary value problems Differential equations Initial value problems Parallel processing (Electronic computers) |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT kiehlmartin parallelmultipleshootingforthesolutionofinitialvalueproblems |