Time-space optimal parallel merging and sorting:

Abstract: "A parallel algorithm is time-space optimal if it achieves optimal speedup and if it uses only a constant amount of extra space per processor even when the number of processors is fixed. Previously published parallel merging and sorting algorithms fail to meet at least one of these cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guan, Xiaojun (VerfasserIn), Langston, Michael A. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Knoxville, TN 1990
Schriftenreihe:University of Tennessee <Knoxville, Tenn.> / Computer Science Department: CS 1990,102
Schlagworte:
Zusammenfassung:Abstract: "A parallel algorithm is time-space optimal if it achieves optimal speedup and if it uses only a constant amount of extra space per processor even when the number of processors is fixed. Previously published parallel merging and sorting algorithms fail to meet at least one of these criteria. In this paper, we present a parallel merging algorithm that, on an EREW PRAM with k processors, merges two sorted lists of total length n in O(n/k + log n). We also describe a stable version of our parallel merging algorithm that is similarly time- space optimal on an EREW PRAM. These two parallel merges naturally lead to time-space optimal parallel sorting algorithms."
Beschreibung:27 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!