Optimal parallelization of LasVegas algorithms:
Abstract: "Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when it stops but whose running time is a random variable. In [1] a method was developed for minimizing the expected time required to obtain an answer from A using sequential str...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
München
1993
|
Schriftenreihe: | Technische Universität <München>: TUM-I
9329 |
Schlagworte: | |
Zusammenfassung: | Abstract: "Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when it stops but whose running time is a random variable. In [1] a method was developed for minimizing the expected time required to obtain an answer from A using sequential strategies which simulate A as follows: run A for a fixed amount of time t₁, then run A independently for a fixed amount of time t₂, etc. The simulation stops if A completes its execution during any of the runs. In this paper, we consider parallel simulation strategies for this same problem, i.e., strategies where many sequential strategies are executed independently in parallel using a large number of processors. We present a close to optimal parallel strategy for the case when the distribution of A is known. If the number of processors is below a certain threshold, we show that this parallel strategy achieves almost linear speedup over the optimal sequential strategy. For the more realistic case where the distribution of A is not known, we describe a universal parallel strategy whose expected running time is only a logarithmic factor worse than that of an optimal parallel strategy. Finally, the application of the described parallel strategies to a randomized automated theorem prover confirms the theoretical results and shows that in most cases good speedup can be achieved up to hundreds of processors, even on networks of workstations." |
Beschreibung: | 17 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009130212 | ||
003 | DE-604 | ||
005 | 20040414 | ||
007 | t | ||
008 | 940307s1993 gw d||| t||| 00||| eng d | ||
016 | 7 | |a 940414341 |2 DE-101 | |
035 | |a (OCoLC)32526789 | ||
035 | |a (DE-599)BVBBV009130212 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-12 |a DE-91G | ||
100 | 1 | |a Luby, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optimal parallelization of LasVegas algorithms |c Michael Luby, Wolfgang Ertel |
264 | 1 | |a München |c 1993 | |
300 | |a 17 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-I |v 9329 | |
490 | 1 | |a Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht / A |v 1993,15 | |
520 | 3 | |a Abstract: "Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when it stops but whose running time is a random variable. In [1] a method was developed for minimizing the expected time required to obtain an answer from A using sequential strategies which simulate A as follows: run A for a fixed amount of time t₁, then run A independently for a fixed amount of time t₂, etc. The simulation stops if A completes its execution during any of the runs. In this paper, we consider parallel simulation strategies for this same problem, i.e., strategies where many sequential strategies are executed independently in parallel using a large number of processors. We present a close to optimal parallel strategy for the case when the distribution of A is known. If the number of processors is below a certain threshold, we show that this parallel strategy achieves almost linear speedup over the optimal sequential strategy. For the more realistic case where the distribution of A is not known, we describe a universal parallel strategy whose expected running time is only a logarithmic factor worse than that of an optimal parallel strategy. Finally, the application of the described parallel strategies to a randomized automated theorem prover confirms the theoretical results and shows that in most cases good speedup can be achieved up to hundreds of processors, even on networks of workstations." | |
650 | 4 | |a Computer algorithms | |
700 | 1 | |a Ertel, Wolfgang |e Verfasser |4 aut | |
810 | 2 | |a A |t Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht |v 1993,15 |w (DE-604)BV004627888 |9 1993,15 | |
830 | 0 | |a Technische Universität <München>: TUM-I |v 9329 |w (DE-604)BV006185376 |9 9329 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-006051779 |
Datensatz im Suchindex
_version_ | 1804123546459308032 |
---|---|
any_adam_object | |
author | Luby, Michael Ertel, Wolfgang |
author_facet | Luby, Michael Ertel, Wolfgang |
author_role | aut aut |
author_sort | Luby, Michael |
author_variant | m l ml w e we |
building | Verbundindex |
bvnumber | BV009130212 |
ctrlnum | (OCoLC)32526789 (DE-599)BVBBV009130212 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02750nam a2200349 cb4500</leader><controlfield tag="001">BV009130212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040414 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940307s1993 gw d||| t||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940414341</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32526789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009130212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luby, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal parallelization of LasVegas algorithms</subfield><subfield code="c">Michael Luby, Wolfgang Ertel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9329</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht / A</subfield><subfield code="v">1993,15</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when it stops but whose running time is a random variable. In [1] a method was developed for minimizing the expected time required to obtain an answer from A using sequential strategies which simulate A as follows: run A for a fixed amount of time t₁, then run A independently for a fixed amount of time t₂, etc. The simulation stops if A completes its execution during any of the runs. In this paper, we consider parallel simulation strategies for this same problem, i.e., strategies where many sequential strategies are executed independently in parallel using a large number of processors. We present a close to optimal parallel strategy for the case when the distribution of A is known. If the number of processors is below a certain threshold, we show that this parallel strategy achieves almost linear speedup over the optimal sequential strategy. For the more realistic case where the distribution of A is not known, we describe a universal parallel strategy whose expected running time is only a logarithmic factor worse than that of an optimal parallel strategy. Finally, the application of the described parallel strategies to a randomized automated theorem prover confirms the theoretical results and shows that in most cases good speedup can be achieved up to hundreds of processors, even on networks of workstations."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ertel, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">A</subfield><subfield code="t">Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht</subfield><subfield code="v">1993,15</subfield><subfield code="w">(DE-604)BV004627888</subfield><subfield code="9">1993,15</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9329</subfield><subfield code="w">(DE-604)BV006185376</subfield><subfield code="9">9329</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006051779</subfield></datafield></record></collection> |
id | DE-604.BV009130212 |
illustrated | Illustrated |
indexdate | 2024-07-09T17:31:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006051779 |
oclc_num | 32526789 |
open_access_boolean | |
owner | DE-29T DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-29T DE-12 DE-91G DE-BY-TUM |
physical | 17 S. graph. Darst. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
record_format | marc |
series | Technische Universität <München>: TUM-I |
series2 | Technische Universität <München>: TUM-I Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht / A |
spelling | Luby, Michael Verfasser aut Optimal parallelization of LasVegas algorithms Michael Luby, Wolfgang Ertel München 1993 17 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-I 9329 Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht / A 1993,15 Abstract: "Let A be a Las Vegas algorithm, i.e., A is a randomized algorithm that always produces the correct answer when it stops but whose running time is a random variable. In [1] a method was developed for minimizing the expected time required to obtain an answer from A using sequential strategies which simulate A as follows: run A for a fixed amount of time t₁, then run A independently for a fixed amount of time t₂, etc. The simulation stops if A completes its execution during any of the runs. In this paper, we consider parallel simulation strategies for this same problem, i.e., strategies where many sequential strategies are executed independently in parallel using a large number of processors. We present a close to optimal parallel strategy for the case when the distribution of A is known. If the number of processors is below a certain threshold, we show that this parallel strategy achieves almost linear speedup over the optimal sequential strategy. For the more realistic case where the distribution of A is not known, we describe a universal parallel strategy whose expected running time is only a logarithmic factor worse than that of an optimal parallel strategy. Finally, the application of the described parallel strategies to a randomized automated theorem prover confirms the theoretical results and shows that in most cases good speedup can be achieved up to hundreds of processors, even on networks of workstations." Computer algorithms Ertel, Wolfgang Verfasser aut A Sonderforschungsbereich Methoden und Werkzeuge für die Nutzung Paralleler Rechnerarchitekturen: SFB-Bericht 1993,15 (DE-604)BV004627888 1993,15 Technische Universität <München>: TUM-I 9329 (DE-604)BV006185376 9329 |
spellingShingle | Luby, Michael Ertel, Wolfgang Optimal parallelization of LasVegas algorithms Technische Universität <München>: TUM-I Computer algorithms |
title | Optimal parallelization of LasVegas algorithms |
title_auth | Optimal parallelization of LasVegas algorithms |
title_exact_search | Optimal parallelization of LasVegas algorithms |
title_full | Optimal parallelization of LasVegas algorithms Michael Luby, Wolfgang Ertel |
title_fullStr | Optimal parallelization of LasVegas algorithms Michael Luby, Wolfgang Ertel |
title_full_unstemmed | Optimal parallelization of LasVegas algorithms Michael Luby, Wolfgang Ertel |
title_short | Optimal parallelization of LasVegas algorithms |
title_sort | optimal parallelization of lasvegas algorithms |
topic | Computer algorithms |
topic_facet | Computer algorithms |
volume_link | (DE-604)BV004627888 (DE-604)BV006185376 |
work_keys_str_mv | AT lubymichael optimalparallelizationoflasvegasalgorithms AT ertelwolfgang optimalparallelizationoflasvegasalgorithms |