Numerical analysis of symmetric matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Englewood Cliffs, N.J.
Prentice-Hall
1973
|
Schriftenreihe: | Prentice-Hall series in automatic computation
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | EST: Numerik symmetrischer Matrizen <engl.> |
Beschreibung: | 278 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009049266 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940227s1973 |||| 00||| eng d | ||
035 | |a (OCoLC)427512 | ||
035 | |a (DE-599)BVBBV009049266 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h ger | |
049 | |a DE-29T |a DE-83 | ||
050 | 0 | |a QA263 | |
082 | 0 | |a 512.9/434 |2 19 | |
100 | 1 | |a Schwarz, Hans R. |e Verfasser |4 aut | |
240 | 1 | 0 | |a Numerik symmetrischer Matrizen |
245 | 1 | 0 | |a Numerical analysis of symmetric matrices |
264 | 1 | |a Englewood Cliffs, N.J. |b Prentice-Hall |c 1973 | |
300 | |a 278 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Prentice-Hall series in automatic computation | |
500 | |a EST: Numerik symmetrischer Matrizen <engl.> | ||
650 | 4 | |a Analyse numérique | |
650 | 4 | |a Matrices | |
650 | 7 | |a Matrices symétriques |2 ram | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Symmetric matrices | |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrische Matrix |0 (DE-588)4314057-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwertproblem |0 (DE-588)4013802-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 0 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 1 | 1 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 2 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Eigenwertproblem |0 (DE-588)4013802-1 |D s |
689 | 3 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Symmetrische Matrix |0 (DE-588)4314057-9 |D s |
689 | 4 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
689 | 5 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 5 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 5 | |8 4\p |5 DE-604 | |
689 | 6 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 6 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 6 | |8 5\p |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005989307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005989307 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804123404968656896 |
---|---|
adam_text | CONTENTS
1 EUCLIDIAN VECTOR SPACE: NORMS, QUADRATIC FORMS,
SYMMETRIC DEFINITE SYSTEMS OF EQUATIONS 1
1 1 The Linear Vector Space; Matrices 1
1 2 Norms; Condition of a Matrix 7
1 3 Necessary and Sufficient Conditions for the
Definiteness of a Quadratic Form 15
1 4 Symmetric Triangular Decomposition: Cholesky s
Method 23
2 RELAXATION METHODS 38
2 1 Fundamentals in Relaxation Calculations 38
2 2 The Successive Displacement Method 42
2 3 Gradient Methods 63
2 4 The Method of Conjugate Gradients 68
3 DATA FITTING 76
3 1 Formulation of the Problem 76
3 2 Unconstrained Fitting 81
3 3 Constrained Fitting 86
3 4 The Method of Orthogonalization in Data Fitting 92
3 5 The Method of Conjugate Gradients in
Data Fitting 103
4 SYMMETRIC EIGENVALUE PROBLEMS 111
4 1 Eigenvalue Problems of Physics 111
4 2 Criticism of the Characteristic Polynomial 114
4 3 The Principal Axis Theorem 117
4 4 Transformation to Diagonal Form: Simultaneous
Computation of All Eigenvalues 121
4 5 Transformation to Tridiagonal Form:
Sturm Sequences; Computation of Individual
Eigenvalues 136
vii
Viii CONTENTS
4 6 LR Transformation and QD Algorithm:
Calculation of the Smallest Eigenvalues 158
4 7 Vector Iteration: Largest and Smallest Eigenvalues 187
4 8 The Generalized Symmetric Eigenvalue Problem 199
4 9 Resume of Eigenvalue Methods 203
5 BOUNDARY VALUE PROBLEMS, RELAXATION 205
5 1 Boundary Value Problems 205
5 2 Operator Equations and Relaxation 221
5 3 The Eigenvalue Problem 248
APPENDIX: Fortran Subroutine Counterparts
of Algol Procedures 251
BIBLIOGRAPHY 265
INDEX 271
|
any_adam_object | 1 |
author | Schwarz, Hans R. |
author_facet | Schwarz, Hans R. |
author_role | aut |
author_sort | Schwarz, Hans R. |
author_variant | h r s hr hrs |
building | Verbundindex |
bvnumber | BV009049266 |
callnumber-first | Q - Science |
callnumber-label | QA263 |
callnumber-raw | QA263 |
callnumber-search | QA263 |
callnumber-sort | QA 3263 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)427512 (DE-599)BVBBV009049266 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03232nam a2200781 c 4500</leader><controlfield tag="001">BV009049266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940227s1973 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)427512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009049266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA263</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Hans R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Numerik symmetrischer Matrizen</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical analysis of symmetric matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Englewood Cliffs, N.J.</subfield><subfield code="b">Prentice-Hall</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">278 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Prentice-Hall series in automatic computation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">EST: Numerik symmetrischer Matrizen <engl.></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices symétriques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Matrix</subfield><subfield code="0">(DE-588)4314057-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Eigenwertproblem</subfield><subfield code="0">(DE-588)4013802-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Symmetrische Matrix</subfield><subfield code="0">(DE-588)4314057-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005989307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005989307</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV009049266 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:29:14Z |
institution | BVB |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005989307 |
oclc_num | 427512 |
open_access_boolean | |
owner | DE-29T DE-83 |
owner_facet | DE-29T DE-83 |
physical | 278 S. |
psigel | TUB-nveb |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Prentice-Hall |
record_format | marc |
series2 | Prentice-Hall series in automatic computation |
spelling | Schwarz, Hans R. Verfasser aut Numerik symmetrischer Matrizen Numerical analysis of symmetric matrices Englewood Cliffs, N.J. Prentice-Hall 1973 278 S. txt rdacontent n rdamedia nc rdacarrier Prentice-Hall series in automatic computation EST: Numerik symmetrischer Matrizen <engl.> Analyse numérique Matrices Matrices symétriques ram Numerical analysis Symmetric matrices Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Symmetrische Matrix (DE-588)4314057-9 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Eigenwertproblem (DE-588)4013802-1 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 s Numerische Mathematik (DE-588)4042805-9 s DE-604 Lineare Algebra (DE-588)4035811-2 s Matrix Mathematik (DE-588)4037968-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Eigenwertproblem (DE-588)4013802-1 s 2\p DE-604 Symmetrische Matrix (DE-588)4314057-9 s 3\p DE-604 4\p DE-604 5\p DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005989307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schwarz, Hans R. Numerical analysis of symmetric matrices Analyse numérique Matrices Matrices symétriques ram Numerical analysis Symmetric matrices Matrix Mathematik (DE-588)4037968-1 gnd Symmetrische Matrix (DE-588)4314057-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Eigenwertproblem (DE-588)4013802-1 gnd Numerische Mathematik (DE-588)4042805-9 gnd Lineare Algebra (DE-588)4035811-2 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
subject_GND | (DE-588)4037968-1 (DE-588)4314057-9 (DE-588)4128130-5 (DE-588)4013802-1 (DE-588)4042805-9 (DE-588)4035811-2 (DE-588)4126963-9 |
title | Numerical analysis of symmetric matrices |
title_alt | Numerik symmetrischer Matrizen |
title_auth | Numerical analysis of symmetric matrices |
title_exact_search | Numerical analysis of symmetric matrices |
title_full | Numerical analysis of symmetric matrices |
title_fullStr | Numerical analysis of symmetric matrices |
title_full_unstemmed | Numerical analysis of symmetric matrices |
title_short | Numerical analysis of symmetric matrices |
title_sort | numerical analysis of symmetric matrices |
topic | Analyse numérique Matrices Matrices symétriques ram Numerical analysis Symmetric matrices Matrix Mathematik (DE-588)4037968-1 gnd Symmetrische Matrix (DE-588)4314057-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Eigenwertproblem (DE-588)4013802-1 gnd Numerische Mathematik (DE-588)4042805-9 gnd Lineare Algebra (DE-588)4035811-2 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
topic_facet | Analyse numérique Matrices Matrices symétriques Numerical analysis Symmetric matrices Matrix Mathematik Symmetrische Matrix Numerisches Verfahren Eigenwertproblem Numerische Mathematik Lineare Algebra Matrizenrechnung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005989307&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schwarzhansr numeriksymmetrischermatrizen AT schwarzhansr numericalanalysisofsymmetricmatrices |