Tight bounds on the number of minimum-mean cycle cancellations:
Abstract: "We prove a tight [theta](min(nm log(nC), nm²)) bound on the number of iterations of the minimum-mean cycle canceling algorithm of Goldberg and Tarjan [12]. We do this by giving the lower bound and by improving the strongly polynomial upper bound on the number of iterations to O(nm²)....
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stanford, Calif.
1990
|
Schriftenreihe: | Stanford University / Computer Science Department: Report STAN CS
1328 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We prove a tight [theta](min(nm log(nC), nm²)) bound on the number of iterations of the minimum-mean cycle canceling algorithm of Goldberg and Tarjan [12]. We do this by giving the lower bound and by improving the strongly polynomial upper bound on the number of iterations to O(nm²). We also give an improved version of the maximum-mean cut canceling algorithm of [6], which is a dual of the minimum-mean cycle canceling algorithm. Our version of the dual algorithm runs in O(nm²) iterations." |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008973902 | ||
003 | DE-604 | ||
005 | 19961015 | ||
007 | t | ||
008 | 940206s1990 |||| 00||| eng d | ||
035 | |a (OCoLC)26403960 | ||
035 | |a (DE-599)BVBBV008973902 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
050 | 0 | |a QA402.5 | |
082 | 0 | |a 519.3 |2 20 | |
100 | 1 | |a Radzik, Tomasz |e Verfasser |4 aut | |
245 | 1 | 0 | |a Tight bounds on the number of minimum-mean cycle cancellations |c by Tomasz Radzik ; Andrew V. Goldberg |
264 | 1 | |a Stanford, Calif. |c 1990 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Stanford University / Computer Science Department: Report STAN CS |v 1328 | |
520 | 3 | |a Abstract: "We prove a tight [theta](min(nm log(nC), nm²)) bound on the number of iterations of the minimum-mean cycle canceling algorithm of Goldberg and Tarjan [12]. We do this by giving the lower bound and by improving the strongly polynomial upper bound on the number of iterations to O(nm²). We also give an improved version of the maximum-mean cut canceling algorithm of [6], which is a dual of the minimum-mean cycle canceling algorithm. Our version of the dual algorithm runs in O(nm²) iterations." | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Combinatorial analysis |x Data processing | |
650 | 4 | |a Mathematical optimization |x Data processing | |
700 | 1 | |a Goldberg, Andrew V. |e Verfasser |4 aut | |
810 | 2 | |a Computer Science Department: Report STAN CS |t Stanford University |v 1328 |w (DE-604)BV008928280 |9 1328 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005925553 |
Datensatz im Suchindex
_version_ | 1804123311873982464 |
---|---|
any_adam_object | |
author | Radzik, Tomasz Goldberg, Andrew V. |
author_facet | Radzik, Tomasz Goldberg, Andrew V. |
author_role | aut aut |
author_sort | Radzik, Tomasz |
author_variant | t r tr a v g av avg |
building | Verbundindex |
bvnumber | BV008973902 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.5 |
callnumber-search | QA402.5 |
callnumber-sort | QA 3402.5 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)26403960 (DE-599)BVBBV008973902 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01663nam a2200349 cb4500</leader><controlfield tag="001">BV008973902</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19961015 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1990 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26403960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008973902</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Radzik, Tomasz</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tight bounds on the number of minimum-mean cycle cancellations</subfield><subfield code="c">by Tomasz Radzik ; Andrew V. Goldberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stanford, Calif.</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Stanford University / Computer Science Department: Report STAN CS</subfield><subfield code="v">1328</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We prove a tight [theta](min(nm log(nC), nm²)) bound on the number of iterations of the minimum-mean cycle canceling algorithm of Goldberg and Tarjan [12]. We do this by giving the lower bound and by improving the strongly polynomial upper bound on the number of iterations to O(nm²). We also give an improved version of the maximum-mean cut canceling algorithm of [6], which is a dual of the minimum-mean cycle canceling algorithm. Our version of the dual algorithm runs in O(nm²) iterations."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldberg, Andrew V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Computer Science Department: Report STAN CS</subfield><subfield code="t">Stanford University</subfield><subfield code="v">1328</subfield><subfield code="w">(DE-604)BV008928280</subfield><subfield code="9">1328</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005925553</subfield></datafield></record></collection> |
id | DE-604.BV008973902 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:27:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005925553 |
oclc_num | 26403960 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 18 S. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
record_format | marc |
series2 | Stanford University / Computer Science Department: Report STAN CS |
spelling | Radzik, Tomasz Verfasser aut Tight bounds on the number of minimum-mean cycle cancellations by Tomasz Radzik ; Andrew V. Goldberg Stanford, Calif. 1990 18 S. txt rdacontent n rdamedia nc rdacarrier Stanford University / Computer Science Department: Report STAN CS 1328 Abstract: "We prove a tight [theta](min(nm log(nC), nm²)) bound on the number of iterations of the minimum-mean cycle canceling algorithm of Goldberg and Tarjan [12]. We do this by giving the lower bound and by improving the strongly polynomial upper bound on the number of iterations to O(nm²). We also give an improved version of the maximum-mean cut canceling algorithm of [6], which is a dual of the minimum-mean cycle canceling algorithm. Our version of the dual algorithm runs in O(nm²) iterations." Datenverarbeitung Combinatorial analysis Data processing Mathematical optimization Data processing Goldberg, Andrew V. Verfasser aut Computer Science Department: Report STAN CS Stanford University 1328 (DE-604)BV008928280 1328 |
spellingShingle | Radzik, Tomasz Goldberg, Andrew V. Tight bounds on the number of minimum-mean cycle cancellations Datenverarbeitung Combinatorial analysis Data processing Mathematical optimization Data processing |
title | Tight bounds on the number of minimum-mean cycle cancellations |
title_auth | Tight bounds on the number of minimum-mean cycle cancellations |
title_exact_search | Tight bounds on the number of minimum-mean cycle cancellations |
title_full | Tight bounds on the number of minimum-mean cycle cancellations by Tomasz Radzik ; Andrew V. Goldberg |
title_fullStr | Tight bounds on the number of minimum-mean cycle cancellations by Tomasz Radzik ; Andrew V. Goldberg |
title_full_unstemmed | Tight bounds on the number of minimum-mean cycle cancellations by Tomasz Radzik ; Andrew V. Goldberg |
title_short | Tight bounds on the number of minimum-mean cycle cancellations |
title_sort | tight bounds on the number of minimum mean cycle cancellations |
topic | Datenverarbeitung Combinatorial analysis Data processing Mathematical optimization Data processing |
topic_facet | Datenverarbeitung Combinatorial analysis Data processing Mathematical optimization Data processing |
volume_link | (DE-604)BV008928280 |
work_keys_str_mv | AT radziktomasz tightboundsonthenumberofminimummeancyclecancellations AT goldbergandrewv tightboundsonthenumberofminimummeancyclecancellations |